Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(43): 14458-14468, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27763764

RESUMEN

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi2Te3) that violates phase equilibrium, namely, phase-pure n-type K0.06Bi2Te3.18. Incorporated potassium and tellurium in Bi2Te3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 µW cm-1 K-2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

2.
Nano Lett ; 12(2): 640-7, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22268842

RESUMEN

We herein report on the large-scale synthesis of ultrathin Bi(2)Te(3) nanoplates and subsequent spark plasma sintering to fabricate n-type nanostructured bulk thermoelectric materials. Bi(2)Te(3) nanoplates were synthesized by the reaction between bismuth thiolate and tri-n-octylphosphine telluride in oleylamine. The thickness of the nanoplates was ~1 nm, which corresponds to a single layer in Bi(2)Te(3) crystals. Bi(2)Te(3) nanostructured bulk materials were prepared by sintering of surfactant-removed Bi(2)Te(3) nanoplates using spark plasma sintering. We found that the grain size and density were strongly dependent on the sintering temperature, and we investigated the effect of the sintering temperature on the thermoelectric properties of the Bi(2)Te(3) nanostructured bulk materials. The electrical conductivities increased with an increase in the sintering temperature, owing to the decreased interface density arising from the grain growth and densification. The Seebeck coefficients roughly decreased with an increase in the sintering temperature. Interestingly, the electron concentrations and mobilities strongly depended on the sintering temperature, suggesting the potential barrier scattering at interfaces and the doping effect of defects and organic residues. The thermal conductivities also increased with an increase in the sintering temperature because of grain growth and densification. The maximum thermoelectric figure-of-merit, ZT, is 0.62 at 400 K, which is one of the highest among the reported values of n-type nanostructured materials based on chemically synthesized nanoparticles. This increase in ZT shows the possibility of the preparation of highly efficient thermoelectric materials by chemical synthesis.


Asunto(s)
Bismuto/química , Nanoestructuras/química , Telurio/química , Temperatura , Tamaño de la Partícula , Propiedades de Superficie
3.
Small ; 8(15): 2394-402, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22641481

RESUMEN

The dimension-controlled synthesis of CdS nanocrystals in the strong quantum confinement regime is reported. Zero-, one-, and two-dimensional CdS nanocrystals are selectively synthesized via low-temperature reactions using alkylamines as surface-capping ligands. The shape of the nanocrystals is controlled systematically by using different amines and reaction conditions. The 2D nanoplates have a uniform thickness as low as 1.2 nm. Furthermore, their optical absorption and emission spectra show very narrow peaks indicating extremely uniform thickness. It is demonstrated that 2D nanoplates are generated by 2D assembly of CdS magic-sized clusters formed at the nucleation stage, and subsequent attachment of the clusters. The stability of magic-sized clusters in amine solvent strongly influences the final shapes of the nanocrystals. The thickness of the nanoplates increases in a stepwise manner while retaining their uniformity, similar to the growth behavior of inorganic clusters. The 2D CdS nanoplates are a new type of quantum well with novel nanoscale properties in the strong quantum confinement regime.


Asunto(s)
Compuestos de Cadmio/química , Nanopartículas/química , Nanotubos/química , Puntos Cuánticos , Sulfuros/química , Nanoestructuras/química
4.
Chem Commun (Camb) ; 55(33): 4757-4760, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30869098

RESUMEN

We report a facile two-step method to synthesize nanostructured P2-Na2/3MnO2via ligand exchange and intercalation of sodium ions into ultrathin manganese oxide nanoplates. Sodium storage performance of the synthesized material shows a high capacity (170 mA h g-1) and an excellent rate performance.

6.
Adv Mater ; 28(42): 9326-9332, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27571382

RESUMEN

Large-scale colloidal synthesis and integration of uniform-sized molybdenum disulfide (MoS2 ) nanosheets for a flexible resistive random access memory (RRAM) array are presented. RRAM using MoS2 nanosheets shows a ≈10 000 times higher on/off ratio than that based on exfoliated MoS2 . The good uniformity of the MoS2 nanosheets allows wafer-scale system integration of the RRAM array with pressure sensors and quantum-dot light-emitting diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA