Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nanotechnology ; 25(23): 235601, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24848279

RESUMEN

We have characterized and evaluated changes in graphene oxide (GO) induced by means of freeze-drying. In order to evaluate these changes, we investigated the effects of freeze-drying and chemical reduction processes on the structure, morphology, chemical composition, and Raman properties of GO and reduced GO. The freeze-dried GO had a pore structure, maintaining a pored morphology even after thermal annealing. The freeze-dried samples were composed of a single folded nanosheet or a few nanosheets stacked and folded. The oxygen-containing functional groups were removed not only during the freeze-drying but also during the reduction processes, with an accompanying decrease in the average size of the sp(2) carbon domain (i.e. an increase in the ID/IG value).

2.
Ultrason Sonochem ; 89: 106145, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36067647

RESUMEN

All-inorganic halide perovskite nanocrystals are next-generation materials with excellent optical and semiconductor properties suitable for display applications. In this study, we introduce an optimized ultrasonication method for the high-capacity synthesis of highly luminescent inorganic perovskite nanocrystals. After the synthesis of CsPbBr3 with superior optical performance by ultrasonication method, halide anion exchange was performed to tune the stable emission wavelength over the entire visible range. In particular, the maximum photoluminescence wavelengths of the red and green perovskite nanocrystals were appropriate for light-emitting diode applications, and their full-width-at-half-maximum were very narrow, showing outstanding color purity. The materials also had excellent thermal and photo-stability, which is a necessary requirement for perovskite nanocrystal/organic light-emitting diode hybrid device applications. We formulated uniformly stable perovskite nanocrystal inks and optimized their physical and rheological properties for successful inkjet-printing. Finally, we fabricated a hybrid device with a color conversion layer based on the red and green perovskite nanocrystals synthesized using the optimized ultrasonication and halide-ion-exchange methods. The color reproduction range of the fabricated devices was 27.3 % wider than that of the National Television System Committee values, indicating very vivid colors.

3.
ACS Nano ; 14(8): 10655-10665, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32806060

RESUMEN

Although the multiwalled carbon nanotube (MWNT) is a promising material for use in the production of high electrical conductivity (σ) polymer nanocomposites, its tendency to aggregate and distribute randomly in a polymer matrix is a problematic issue. In the current study, we developed a highly conductive and monoclinically aligned MWNT-polyamide 6 (PA) nanocomposite containing interfacing flavin moieties. In this system, the flavin mononucleotide (FMN) initially serves as a noncovalent aqueous surfactant for individualizing MWNTs in the form of FMN-wrapped MWNTs (FMN-MWNT), and then partially decomposed FMN (dFMN) induces crystallization of the PA on the MWNTs. The results of experiments performed using material subjected to partial dissolution of PA matrix show that the nanocomposite PA-dFMN-MWNT, formed by melt extrusion of PA and dFMN-MWNT, contains a three-dimensional monoclinic MWNT network embedded in an equally monoclinic PA matrix. An increase in monoclinic network promoted by an increase in the content of MWNT increases σ of the nanocomposite up to 100 S/m, the highest value reported for a polymer-MWNT nanocomposite. X-ray diffraction along with transmission electron microscopy reveal that the presence of dFMN induces the formation of monoclinic PA on dFMN-MWNT. The high σ of the PA-dFMN-MWNT nanocomposite is also a consequence of a minimization of defect formation of MWNT by noncovalent functionalization. Hierarchical structural ordering, yet individualization of MWNTs, provides a viable strategy to improve the physical property of nanocomposites.

4.
Polymers (Basel) ; 12(12)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419378

RESUMEN

The methoxy-type silane coupling agents were synthesized via the modification of the hydrolyzable group and characterized to investigate the change in properties of silica/rubber composites based on the different silane coupling agent structures and the masterbatch fabrication methods. The prepared methoxy-type silane coupling agents exhibited higher reactivity towards hydrolysis compared to the conventional ethoxy-type one which led to the superior silanization to the silica filler surface modified for the reinforcement of styrene-butadiene rubber. The silica/rubber composites based on these methoxy-type silane coupling agents had the characteristics of more developed vulcanization and mechanical properties when fabricated as masterbatch products for tread materials of automobile tire surfaces. In particular, the dimethoxy-type silane coupling agent showed more enhanced rubber composite properties than the trimethoxy-type one, and the environmentally friendly wet masterbatch fabrication process was successfully optimized. The reactivity of the synthesized silane coupling agents toward hydrolysis was investigated by FITR spectroscopic analysis, and the mechanical properties of the prepared silica-reinforced rubber polymers were characterized using a moving die rheometer and a universal testing machine.

5.
J Food Sci ; 82(9): 2113-2120, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28885706

RESUMEN

Halloysite nanotubes (HNTs), which are natural nanomaterials, have a hollow tubular structure with about 15 nm inner and 50 nm outer diameters. Because of their tubular shape, HNTs loaded with various materials have been investigated as functional nanocapsules. In this study, thyme essential oil (TO) was encapsulated successfully in HNTs using vacuum pulling methods, followed by end-capping or a layer-by-layer surface coating process for complete encapsulation. Nanocapsules loaded with TO were mixed with flexographic ink and coated on a paper for applications as food packaging materials. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the nanocapsules and to confirm the TO loading of the nanocapsules. Fourier transform infrared spectroscopy and thermogravimetric analyses analysis were used to complement the structural information. In addition, the controlled release of TO from the nanocapsules showed sustained release properties over a period of many days. The results reveal that the release properties of TO in these nanocapsules could be controlled by surface modifications such as end-capping and/or surface coating of bare nanocapsules. The packaging paper with TO-loaded HNT capsules was effective in eliminating against Escherichia coli during the first 5 d and showed strong antibacterial activity for about 10 d.


Asunto(s)
Silicatos de Aluminio/química , Embalaje de Alimentos/instrumentación , Nanocápsulas/química , Aceites Volátiles/química , Extractos Vegetales/química , Thymus (Planta)/química , Antibacterianos/química , Arcilla , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
6.
J Food Sci ; 81(8): E1956-65, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27332965

RESUMEN

The aims of this study were to develop insect-proof halloysite nanotubes (HNTs) and apply the HNTs to a low-density polyethylene (LDPE) film that will prevent Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), commonly known as Indian mealmoth, from infesting the food. Clove bud oil (CO), an insect repellent, was encapsulated into HNTs with polyethylenimine (PEI) to bring about controlled release of CO. Chemical composition and insecticidal effect of CO were examined. The Fourier transform infrared (FTIR) spectrum of encapsulated CO was confirmed. The surface charges of uncoated HNTs (HNTs/CO) and coated HNTs with PEI by the layer-by-layer (LBL) method (HNTs/CO/LBL) were determined to be -37.23 and 36.33 mV, respectively. HNTs/CO/LBL showed slow, controlled release of CO compared to HNTs/CO. After 30 d, the residual amounts of CO in HNTs/CO and HNTs/CO/LBL were estimated to be 13.43 and 28.66 mg/g, respectively. HNTs/CO/LBL showed the most sustainable repellent effect. HNTs applied to gravure printing ink solution did not affect mechanical, optical, or thermal properties of the developed film. Gravure-printed LDPE film containing HNTs/CO/LBL displayed the greatest preventive effect on insect penetration, indicating its potential for use as insect-resistant food packaging materials.


Asunto(s)
Silicatos de Aluminio/química , Aceite de Clavo , Embalaje de Alimentos/métodos , Repelentes de Insectos , Insecticidas , Lepidópteros , Nanotubos/química , Animales , Arcilla , Composición de Medicamentos , Contaminación de Alimentos/prevención & control , Humanos , Polietileno , Polietileneimina
7.
Sci Rep ; 4: 3579, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24389995

RESUMEN

Ostwald ripening is an evolutionary mechanism that results in micro-scale carbon spheres from nano-scale spheres. Vapor-phase carbon elements from small carbon nanoparticles are transported to the surface of submicron-scale carbon spheres, eventually leading to their evolution to micro-scale spheres via well-known growth mechanisms, including the layer-by-layer, island, and mixed growth modes. The results obtained from this work will pave the way to the disclosure of the evolutionary mechanism of micro-scale carbon spheres and open a new avenue for practical applications.

8.
Chem Commun (Camb) ; 48(53): 6672-4, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22641397

RESUMEN

Catalyst-free graphene nanosheets without substrates were synthesized using pure solid carbon sources of multiwalled carbon nanotubes (MWCNTs) and a spark plasma sintering (SPS) process. Single and few-hundred-nanometer graphene nanosheets were formed from gas-phase carbon atoms which were directly evaporated from MWCNTs at a local high temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA