Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Chem Biol ; 20(1): 103-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872402

RESUMEN

Plants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal '*' module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality. We used this module to create PYR1*MANDI/HAB1* and PYR1*AZIN/HAB1*, which possess nanomolar sensitivities to their activating ligands mandipropamid and azinphos-ethyl. Experiments in Arabidopsis thaliana and Saccharomyces cerevisiae demonstrate the sensitive detection of banned organophosphate contaminants using living biosensors and the construction of multi-input/output genetic circuits. Our new modules enable ligand-programmable multi-channel CID systems for plant and eukaryotic synthetic biology that can empower new plant-based and microbe-based sensing modalities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dimerización , Ligandos , Proteínas de Transporte de Membrana/química
2.
Metab Eng ; 83: 102-109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554744

RESUMEN

Precise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts. Here, we develop a two-channel chemically-regulated gene expression system for the multi-stress tolerant yeast Kluyveromyces marxianus and use it to tune ethyl acetate production, a native metabolite produced at high titers in this yeast. To achieve this, we repurposed the plant hormone sensing modules (PYR1ABA/HAB1 and PYR1*MANDI/HAB1*) for high dynamic-range gene activation and repression controlled by either abscisic acid (ABA) or mandipropamid (mandi). To redirect metabolic flux towards ethyl acetate biosynthesis, we simultaneously repress pyruvate dehydrogenase (PDA1) and activate pyruvate decarboxylase (PDC1) to enhance ethyl acetate titers. Thus, we have developed new tools for chemically tuning gene expression in K. marxianus and S. cerevisiae that should be deployable across many non-conventional eukaryotic hosts.


Asunto(s)
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/metabolismo , Acetatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Ingeniería Metabólica , Regulación Fúngica de la Expresión Génica , Ácido Abscísico/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34531324

RESUMEN

Abscisic acid (ABA) is a key plant hormone that mediates both plant biotic and abiotic stress responses and many other developmental processes. ABA receptor antagonists are useful for dissecting and manipulating ABA's physiological roles in vivo. We set out to design antagonists that block receptor-PP2C interactions by modifying the agonist opabactin (OP), a synthetically accessible, high-affinity scaffold. Click chemistry was used to create an ∼4,000-member library of C4-diversified opabactin derivatives that were screened for receptor antagonism in vitro. This revealed a peptidotriazole motif shared among hits, which we optimized to yield antabactin (ANT), a pan-receptor antagonist. An X-ray crystal structure of an ANT-PYL10 complex (1.86 Å) reveals that ANT's peptidotriazole headgroup is positioned to sterically block receptor-PP2C interactions in the 4' tunnel and stabilizes a noncanonical closed-gate receptor conformer that partially opens to accommodate ANT binding. To facilitate binding-affinity studies using fluorescence polarization, we synthesized TAMRA-ANT. Equilibrium dissociation constants for TAMRA-ANT binding to Arabidopsis receptors range from ∼400 to 1,700 pM. ANT displays improved activity in vivo and disrupts ABA-mediated processes in multiple species. ANT is able to accelerate seed germination in Arabidopsis, tomato, and barley, suggesting that it could be useful as a germination stimulant in species where endogenous ABA signaling limits seed germination. Thus, click-based diversification of a synthetic agonist scaffold allowed us to rapidly develop a high-affinity probe of ABA-receptor function for dissecting and manipulating ABA signaling.


Asunto(s)
Ácido Abscísico/antagonistas & inhibidores , Quinolinas/síntesis química , Triazoles/síntesis química , Ácido Abscísico/agonistas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Benzamidas/síntesis química , Benzamidas/química , Proteínas Portadoras/metabolismo , Química Clic/métodos , Ciclohexanos/síntesis química , Ciclohexanos/química , Expresión Génica , Germinación , Modelos Moleculares , Reguladores del Crecimiento de las Plantas/metabolismo , Quinolinas/farmacología , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Triazoles/farmacología
4.
Proc Natl Acad Sci U S A ; 116(31): 15725-15734, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308219

RESUMEN

Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps.


Asunto(s)
Ácido Abscísico/farmacocinética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteolisis , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cullin/genética , Fosfoproteínas Fosfatasas/genética
7.
Nature ; 520(7548): 545-8, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25652827

RESUMEN

Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.


Asunto(s)
Ácido Abscísico/metabolismo , Agroquímicos/farmacología , Amidas/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Carboxílicos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Agua/metabolismo , Aclimatación/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Sequías , Ingeniería Genética , Genotipo , Ligandos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Modelos Moleculares , Transpiración de Plantas/efectos de los fármacos , Plantas/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad
8.
Plant J ; 98(5): 928-941, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30735592

RESUMEN

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Ácidos Grasos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Ácidos Linolénicos/química , Ácidos Linolénicos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 110(29): 12132-7, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818638

RESUMEN

Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin's effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C "lock" hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.


Asunto(s)
Aclimatación/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Moleculares , Hojas de la Planta/citología , Ácido Abscísico/agonistas , Aclimatación/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Cristalografía por Rayos X , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Quinolonas/farmacología , Sulfonamidas/farmacología , Técnicas del Sistema de Dos Híbridos
10.
EMBO J ; 30(20): 4171-84, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21847091

RESUMEN

Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand-dependent signalling system.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Proteína Fosfatasa 2C , Receptores de Superficie Celular/metabolismo , Termodinámica
11.
Nature ; 462(7273): 660-4, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19924127

RESUMEN

The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Estrés Fisiológico/fisiología , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Fenotipo , Fosforilación , Protoplastos/fisiología
12.
Nature ; 462(7273): 665-8, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19898494

RESUMEN

The plant hormone abscisic acid (ABA) has a central role in coordinating the adaptive response in situations of decreased water availability as well as the regulation of plant growth and development. Recently, a 14-member family of intracellular ABA receptors, named PYR/PYL/RCAR, has been identified. These proteins inhibit in an ABA-dependent manner the activity of a family of key negative regulators of the ABA signalling pathway: the group-A protein phosphatases type 2C (PP2Cs). Here we present the crystal structure of Arabidopsis thaliana PYR1, which consists of a dimer in which one of the subunits is bound to ABA. In the ligand-bound subunit, the loops surrounding the entry to the binding cavity fold over the ABA molecule, enclosing it inside, whereas in the empty subunit they form a channel leaving an open access to the cavity, indicating that conformational changes in these loops have a critical role in the stabilization of the hormone-receptor complex. By providing structural details on the ABA-binding pocket, this work paves the way for the development of new small molecules able to activate the plant stress response.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Arabidopsis , Unión Proteica , Estructura Terciaria de Proteína
13.
Nature ; 462(7273): 602-8, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19898420

RESUMEN

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Modelos Moleculares , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína
14.
Proc Natl Acad Sci U S A ; 108(51): 20838-43, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22139369

RESUMEN

Pyrabactin resistance (PYR) 1 and its relatives belong to a family of soluble abscisic acid (ABA) receptors that inhibit type 2C protein phosphatases (PP2C) when in their agonist-stabilized conformation. Given their switch-like properties, we envisioned that mutations that stabilize their agonist-bound conformation could be used to activate signaling in vivo. To identify such mutations, we subjected PYR1 to site-saturation mutagenesis at 39 highly conserved residues that participate in ABA or PP2C contacts. All 741 possible single amino acid substitutions at these sites were tested to identify variants that increase basal PYR1-PP2C interactions, which uncovered activating mutations in 10 residues that preferentially cluster in PYR1's gate loop and C-terminal helix. The mutations cause measurable but incomplete receptor activation in vitro; however, specific triple and quadruple mutant combinations were constructed that promote an agonist-bound conformation, as measured by heteronuclear single quantum coherence NMR, and lead to full receptor activation. Moreover, these mutations retain functionality when introduced into divergent family members, and can therefore be used to dissect individual receptor function in vivo, which has been problematic because of redundancy and family size. Expression of activated PYL2 in Arabidopsis seeds activates ABA signaling by a number of measures: modulation of ABA-regulated gene expression, induction of hyperdormancy, and suppression of ABA deficiency phenotypes in the aba2-1 mutant. Our results set the stage for systematic gain-of-function studies of PYR1 and related ABA receptors and reveal that, despite the large number of receptors, activation of a single receptor is sufficient to activate signaling in planta.


Asunto(s)
Ácido Abscísico/química , Arabidopsis/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptor de Androstano Constitutivo , Análisis Mutacional de ADN , Espectroscopía de Resonancia Magnética/métodos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Conformación Proteica , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
15.
J Biol Chem ; 287(22): 18408-17, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493451

RESUMEN

Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress.


Asunto(s)
Leucil Aminopeptidasa/metabolismo , Chaperonas Moleculares/metabolismo , Solanum lycopersicum/enzimología , Estrés Fisiológico , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa
16.
Plant Physiol ; 156(1): 106-16, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357183

RESUMEN

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1(W385A), which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1(W385A) caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1(W385A) qualifies as a hypermorphic mutation. Expression of hab1(W385A) in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Germinación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Triptófano , Técnicas del Sistema de Dos Híbridos
17.
Methods Enzymol ; 671: 435-470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35878989

RESUMEN

The apocarotenoid phytohormone abscisic acid (ABA) regulates several aspects of plant development and stress responses. ABA is synthesized in response to multiple stressors and indirectly activates subfamily 2 Snf1-related kinases (SnRK2s) by receptor-mediated inhibition of clade A type IIC protein phosphatases (PP2Cs), which normally repress SnRK2 activity. The binding of ABA to its receptors triggers a change in receptor conformation that directs the formation of a receptor-ligand-PP2C complex that inhibits the activity of PP2C; this core mechanism can be harnessed for phosphatase activity-based measurements of receptor activation. In this chapter, we describe general methods for determining the effects of small molecules on ABA receptor function and supplement these with methods describing the synthesis of the high-affinity ligands opabactin (OP), which activates subfamily III and II ABA receptors, and the pan-receptor antagonist antabactin (ANT), and TAMRA-ANT fluorescent derivative of ANT. We present simple methods for quantifying receptor-ligand interactions using both PP2C inhibition and fluorescence polarization (FP) assays. Controls for determining the quality of recombinant receptors are provided, which are required for both quantitative analyses and for experimental consistency. Collectively, these methods will facilitate consistent biochemical measurements of the effects of ligand binding on ABA receptor function in vitro. Although the chapter describes ABA-specific methods, they illustrate and address a common need across receptor systems-reproducible assays that enable high throughput discovery and subsequent optimization of receptor modulators.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Benzamidas , Proteínas Portadoras/metabolismo , Ciclohexanos , Regulación de la Expresión Génica de las Plantas , Ligandos , Transducción de Señal
18.
Nat Biotechnol ; 40(12): 1855-1861, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35726092

RESUMEN

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense-response applications.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biosensibles , Reguladores del Crecimiento de las Plantas , Proteínas de Arabidopsis/genética , Ligandos , Plantas
19.
Plant J ; 61(2): 290-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19874541

RESUMEN

Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group-A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP-tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1-interacting proteins by mass-spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA-signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1-interacting proteins in all LC-MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA-binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1-PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co-immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA-induced stomatal closure and ABA-inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1-ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase-PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR-mediated ABA signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Calcio/metabolismo , Calcio/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Proteínas de Transporte de Membrana/genética , Microscopía Fluorescente , Mutación , Fosfoproteínas Fosfatasas/genética , Fosforilación , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica
20.
Plant J ; 60(4): 575-88, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19624469

RESUMEN

Abscisic acid (ABA) is a key phytohormone involved in adaption to environmental stress and regulation of plant development. Clade A protein phosphatases type 2C (PP2Cs), such as HAB1, are key negative regulators of ABA signaling in Arabidopsis. To obtain further insight into regulation of HAB1 function by ABA, we have screened for HAB1-interacting partners using a yeast two-hybrid approach. Three proteins were identified, PYL5, PYL6 and PYL8, which belong to a 14-member subfamily of the Bet v1-like superfamily. HAB1-PYL5 interaction was confirmed using BiFC and co-immunoprecipitation assays. PYL5 over-expression led to a globally enhanced response to ABA, in contrast to the opposite phenotype reported for HAB1-over-expressing plants. F(2) plants that over-expressed both HAB1 and PYL5 showed an enhanced response to ABA, indicating that PYL5 antagonizes HAB1 function. PYL5 and other members of its protein family inhibited HAB1, ABI1 and ABI2 phosphatase activity in an ABA-dependent manner. Isothermal titration calorimetry revealed saturable binding of (+)ABA to PYL5, with K(d) values of 1.1 mum or 38 nm in the absence or presence of the PP2C catalytic core of HAB1, respectively. Our work indicates that PYL5 is a cytosolic and nuclear ABA receptor that activates ABA signaling through direct inhibition of clade A PP2Cs. Moreover, we show that enhanced resistance to drought can be obtained through PYL5-mediated inhibition of clade A PP2Cs.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA