Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37804830

RESUMEN

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Asunto(s)
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo
2.
Mol Cell ; 82(22): 4246-4261.e11, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36400009

RESUMEN

Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Acetilcoenzima A/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Curr Issues Mol Biol ; 46(3): 2444-2455, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534770

RESUMEN

Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.

4.
Plant Physiol ; 193(1): 661-676, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37348867

RESUMEN

Plant cells can reprogram their fate. The combinatorial actions of auxin and cytokinin dedifferentiate somatic cells to regenerate organs, which can develop into individual plants. As transgenic plants can be generated from genetically modified somatic cells through these processes, cell fate transition is an unavoidable step in crop genetic engineering. However, regeneration capacity closely depends on the genotype, and the molecular events underlying these variances remain elusive. In the present study, we demonstrated that WUSCHEL (WUS)-a homeodomain transcription factor-determines regeneration capacity in different potato (Solanum tuberosum) genotypes. Comparative analysis of shoot regeneration efficiency and expression of genes related to cell fate transition revealed that WUS expression coincided with regeneration rate in different potato genotypes. Moreover, in a high-efficiency genotype, WUS silencing suppressed shoot regeneration. Meanwhile, in a low-efficiency genotype, regeneration could be enhanced through the supplementation of a different type of cytokinin that promoted WUS expression. Computational modeling of cytokinin receptor-ligand interactions suggested that the docking pose of cytokinins mediated by hydrogen bonding with the core residues may be pivotal for WUS expression and shoot regeneration in potatoes. Furthermore, our whole-genome sequencing analysis revealed core sequence variations in the WUS promoters that differentiate low- and high-efficiency genotypes. The present study revealed that cytokinin responses, particularly WUS expression, determine shoot regeneration efficiency in different potato genotypes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Homeodominio/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brotes de la Planta/metabolismo , Citocininas/metabolismo , Genotipo , Regeneración/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-37890996

RESUMEN

BACKGROUND: Rosacea is a chronic skin disorder characterised by abnormal neurovasculature and inflammation in the central region of the face. The efficacy of pulsed-dye laser and intense pulsed light treatments for rosacea have been demonstrated in several clinical trials. However, there is currently no research on the efficacy of long-pulsed alexandrite laser (LPAL) therapy alone for rosacea-related facial redness and its effect on skin microbiota. AIM: To evaluate the efficacy of LPAL therapy on facial redness in rosacea and assess changes in skin microbiota composition. METHODS: Subjects with rosacea (n = 21, mean age: 39.2 ± 11.3 years) were recruited from two medical institutions and received monthly LPAL treatments (Clarity II™, Lutronic Corp.) for 3 months. At each visit, clinical photographs were taken, and erythema was measured using a spectrometer. At the initial and final visits, the Dermatology Life Quality Index (DLQI) and Skin Sensitivity Questionnaire (SSQ) were evaluated. Skin swabs were obtained at the initial and final visit, and facial microbiome composition was analysed using 16S rRNA amplicon sequencing. RESULTS: After three LPAL treatment sessions, the average facial erythema index, measured using Mexameter® decreased significantly from 360.0 ± 96.7 at baseline to 312.0 ± 94.5 at the final visit (p < .05). The DLQI and SSQ showed significant improvement of symptoms. Skin microbiome diversity and relative abundance were altered significantly, particularly in the genera Clostridium, Lawsonella, Bacteroides, and Lactobacillus. CONCLUSIONS: LPAL therapy alone showed favourable efficacy for the treatment of facial redness in rosacea, with some impacts on the skin microbiota composition.


Asunto(s)
Láseres de Estado Sólido , Rosácea , Humanos , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Láseres de Estado Sólido/uso terapéutico , ARN Ribosómico 16S , Rosácea/radioterapia , Eritema , Resultado del Tratamiento
6.
Curr Issues Mol Biol ; 45(3): 2284-2295, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975517

RESUMEN

Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 µM against H1N1, 12.8 and 10.8 µM against H9N2, and 29.2 µM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12-18 h) than in the early stages (3-6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies.

7.
Thorax ; 78(2): 183-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35688622

RESUMEN

BACKGROUND: Interstitial lung abnormalities (ILAs) are associated with the risk of lung cancer and its mortality. However, the impact of ILA on treatment-related complications and survival in patients who underwent curative surgery is still unknown. RESEARCH QUESTION: This study aimed to evaluate the significance of the presence of computed tomography-diagnosed ILA and histopathologically matched interstitial abnormalities on postoperative pulmonary complications (PPCs) and the long-term survival of patients who underwent surgical treatment for lung cancer. STUDY DESIGN AND METHODS: A matched case-control study was designed to compare PPCs and mortality among 50 patients with ILA, 50 patients with idiopathic pulmonary fibrosis (IPF) and 200 controls. Cases and controls were matched by sex, age, smoking history, tumour location, the extent of surgery, tumour histology and pathological TNM stage. RESULTS: Compared with the control group, the OR of the prevalence of PPCs increased to 9.56 (95% CI 2.85 to 32.1, p<0.001) in the ILA group and 56.50 (95% CI 17.92 to 178.1, p<0.001) in the IPF group. The 5-year overall survival (OS) rates of the control, ILA and IPF groups were 76% (95% CI 71% to 83%), 52% (95% CI 37% to 74%) and 32% (95% CI 19% to 53%), respectively (log-rank p<0.001). Patients with ILA had better 5-year OS than those with IPF (log-rank p=0.046) but had worse 5-year OS than those in the control group (log-rank p=0.002). CONCLUSIONS: The presence of radiological and pathological features of ILA in patients with lung cancer undergoing curative surgery was associated with frequent complications and decreased survival.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares , Neoplasias Pulmonares , Humanos , Estudios de Casos y Controles , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/epidemiología , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/cirugía , Fibrosis Pulmonar Idiopática/epidemiología , Estudios Retrospectivos
8.
FASEB J ; 36(7): e22424, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35747929

RESUMEN

Nephrin is a type-1 transmembrane protein and a component of the slit diaphragm renal-filtration barrier. It has several functions in actin remodeling and cell-cell adhesion. Nephrin is principally located in the kidney glomerulus, but several studies have reported that nephrin is found in the pancreas, brain, and placenta. However, nephrin expression and its role in human skin have not yet been reported. First, using single-cell RNA sequencing, immunohistochemistry, and immuno-electron microscopy, nephrin expression was confirmed in human-skin epidermal keratinocytes. Nephrin expression colocalized with the expression of zonula occludens-1 in keratinocytes and was closely related to keratinocyte cell density, proliferation, and migration. High glucose treatment decreased nephrin expression and compromised keratinocyte cell migration without yes-associated protein nuclear entry. This reduced cell migration under high glucose conditions was improved in nephrin-overexpressing keratinocytes. Nephrin was highly expressed on the margins of re-epithelized epidermis based on in vivo mice and ex vivo human skin wound models. The results demonstrate that nephrin is expressed in human-skin keratinocytes and functions in cell adhesion, proliferation, and migration. In conclusion, this study suggests that nephrin may have a variety of physiological roles in human skin.


Asunto(s)
Epidermis , Queratinocitos , Animales , Movimiento Celular/fisiología , Epidermis/metabolismo , Glucosa/metabolismo , Humanos , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones
9.
J Cosmet Laser Ther ; 25(5-8): 86-91, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37839083

RESUMEN

We compared the effectiveness and safety of the long-pulsed neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser alone and combined with a 755-nm alexandrite laser for treating palmoplantar warts. We divided patients into two groups to receive up to four monthly treatments with Nd:YAG alone (single-wavelength) or combined with the alexandrite laser (dual-wavelength). We assessed treatment responses (according to clearance rate), vascular/hyperkeratosis grades, and patient satisfaction and pain ratings. The differences in treatment response (p = .348), patient satisfaction (p = .560), and pain ratings (p = .728) between the groups were not significant. The single- and dual-wavelength treatment options were equally effective in treating recalcitrant palmoplantar warts.


Asunto(s)
Berilio , Láseres de Estado Sólido , Verrugas , Humanos , Láseres de Estado Sólido/uso terapéutico , Verrugas/radioterapia , Satisfacción del Paciente , Dolor/etiología , Resultado del Tratamiento
10.
Curr Issues Mol Biol ; 44(12): 6247-6256, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547087

RESUMEN

Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.

11.
BMC Plant Biol ; 22(1): 133, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317749

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) and calcium ions (Ca2+) are representative signals of plant wound responses. Wounding triggers cell fate transition in detached plant tissues and induces de novo root organogenesis. While the hormonal regulation of root organogenesis has been widely studied, the role of early wound signals including ROS and Ca2+ remains largely unknown. RESULTS: We identified that ROS and Ca2+ are required for de novo root organogenesis, but have different functions in Arabidopsis explants. The inhibition of the ROS and Ca2+ signals delayed root development in detached leaves. Examination of the auxin signaling pathways indicated that ROS and Ca2+ did not affect auxin biosynthesis and transport in explants. Additionally, the expression of key genes related to auxin signals during root organogenesis was not significantly affected by the inhibition of ROS and Ca2+ signals. The addition of auxin partially restored the suppression of root development by the ROS inhibitor; however, auxin supplementation did not affect root organogenesis in Ca2+-depleted explants. CONCLUSIONS: Our results indicate that, while both ROS and Ca2+ are key molecules, at least in part of the auxin signals acts downstream of ROS signaling, and Ca2+ acts downstream of auxin during de novo root organogenesis in leaf explants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/genética , Raíces de Plantas/metabolismo
12.
Lasers Surg Med ; 54(9): 1217-1225, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183378

RESUMEN

OBJECTIVES: To compare the effectiveness of long-pulsed alexandrite laser (LPAL) with that of pulsed-dye laser (PDL) for rosacea. METHODS: This was a single-blind randomized controlled trial on 27 patients who were clinically diagnosed with rosacea. Randomly assigned split face in each patient received four times monthly treatment of LPAL plus low-fluence Nd:YAG with the contralateral side serving as the control treated with PDL. At every visit, the erythema index (EI) was measured with skin analysis systems, and two independent dermatologists evaluated digital photographs for five-point global aesthetic improvement scale (GAIS). RESULTS: The EI significantly decreased on both treated sides (LPAL 366.5 ± 101.0 vs. 295.8 ± 90.2, p < 0.001, PDL 369.0 ± 124.3 vs. 302.7 ± 92.1, p < 0.001) 1 month after fourth treatment (visit 5). Also 3 months after the fourth treatment (visit 6), the reduction in the EI was well maintained on both sides (LPAL 360.3 ± 96.8 vs. 282.0 ± 89.2, p < 0.001, PDL 364.3 ± 121.6 vs. 281.6 ± 97.8, p < 0.001). When comparing the improvement in the EI between the two groups, the percentage reduction in the EI on the LPAL-treated side was not inferior to the PDL-treated side (visit 5: LPAL 18.7 ± 15.7% vs. PDL 16.4 ± 12.9%, p = 0.501 and visit 6: LPAL 21.7 ± 13.9% vs. PDL 21.9 ± 15.2%, p = 0.943). The GAIS and patient satisfaction were comparable between the LPAL and PDL sides and did not show any significant difference. No serious adverse events occurred on either of the treated sides. CONCLUSION: This study showed that the decrease in EI in the treatment of rosacea was comparable between PDL and LPAL. Therefore, LPAL could be a promising alternative treatment option with good merits for rosacea, considering no consumables are required for device maintenance.


Asunto(s)
Láseres de Colorantes , Láseres de Estado Sólido , Rosácea , Berilio , Eritema/etiología , Humanos , Láseres de Colorantes/uso terapéutico , Láseres de Estado Sólido/uso terapéutico , Rosácea/radioterapia , Método Simple Ciego , Resultado del Tratamiento
13.
Am J Dermatopathol ; 44(6): 411-415, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999600

RESUMEN

ABSTRACT: Verruca plana in its regressing phase exhibits clinical and histological features distinct from classic verruca plana, but the ways in which these features should inform treatment plans are still under investigation. We conducted a retrospective single-center analysis of 25 patients with features of classic verruca plana, or plane warts, who exhibited self-remission within 4 weeks of skin biopsy. Measures included lesion sites, clinical findings preceding regression, and histological analysis. Histological analysis involved review by 2 dermatologists followed by impressions given by 4 board-certified dermatologists who were blinded to the clinical characteristics of the patients. Histopathological findings of regressing plane warts showed superficial perivascular infiltration (96%), spongiosis and exocytosis (84%), basal vacuolization (64%), parakeratosis (64%), apoptotic keratinocytes (60%), and lichenoid infiltration (44%). These findings were more compatible with the histological patterns of pityriasis lichenoides, lichen planus, and spongiotic eczema, rather than classic verruca plana. This suggests that regressing verruca plana may be included in the differential diagnosis of lesions exhibiting a lichenoid or spongiotic reaction, and observation may be a favorable treatment plan in these patients.


Asunto(s)
Liquen Plano , Verrugas , Dermatólogos , Humanos , Estudios Retrospectivos , Piel/patología , Verrugas/patología
14.
Proc Natl Acad Sci U S A ; 116(52): 26900-26908, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818942

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus classified within the Banyangvirus genus. SFTS disease has been reported throughout East Asia since 2009 and is characterized by high fever, thrombocytopenia, and leukopenia and has a 12 to 30% case fatality rate. Due to the recent emergence of SFTSV, there has been little time to conduct research into preventative measures aimed at combatting the virus. SFTSV is listed as one of the World Health Organization's Prioritized Pathogens for research into antiviral therapeutics and vaccine development. Here, we report 2 attenuated recombinant SFTS viruses that induce a humoral immune response in immunized ferrets and confer complete cross-genotype protection to lethal challenge. Animals infected with rHB29NSsP102A or rHB2912aaNSs (both genotype D) had a reduced viral load in both serum and tissues and presented without high fever, thrombocytopenia, or mortality associated with infection. rHB29NSsP102A- or rHB2912aaNSs-immunized animals developed a robust anti-SFTSV immune response against cross-genotype isolates of SFTSV. This immune response was capable of neutralizing live virus in a focus-reduction neutralization test (FRNT) and was 100% protective against a cross-genotype lethal challenge with the CB1/2014 strain of SFTSV (genotype B). Thus, using our midsized, aged ferret infection model, we demonstrate 2 live attenuated vaccine candidates against the emerging pathogen SFTSV.

15.
Proc Natl Acad Sci U S A ; 116(39): 19288-19293, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501346

RESUMEN

Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a "single-layer" separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.

16.
Nano Lett ; 21(9): 3974-3980, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33881890

RESUMEN

We report highly emissive and radiatively cooled metallic surfaces that sustain multiple and high-amplitude gap plasmon cavity modes within the principal thermal radiation spectrum at room temperature (i.e., 8-13 µm). A square-lattice array of Cu/ZnS/Cu gap plasmon cavities with five different widths was designed to avoid the near-field coupling between adjacent cavities and the anticrossing of a cavity mode and the first diffraction mode. The gap plasmon cavities fabricated on a Si substrate exhibited an effective emissivity of >0.62, up to an incidence of 60°. Outdoor solar heating experiments showed that the Cu/ZnS/Cu multicavity array lowered the Si substrate temperature by 4 °C at a maximum solar irradiance of 800 W/m2, which is equivalent to a near-one-sun intensity, relative to a planar Cu/ZnS/Cu multilayer. Such mid-infrared spectrum management of metals enables heat dissipation via radiation, which will be further utilized for designing electrodes that cool optoelectronic devices with the same metal/dielectric/metal configuration.

17.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807265

RESUMEN

Adenosine mediates various physiological activities in the body. Adenosine receptors (ARs) are widely expressed in tumors and the tumor microenvironment (TME), and they induce tumor proliferation and suppress immune cell function. There are four types of human adenosine receptor (hARs): hA1, hA2A, hA2B, and hA3. Both hA1 and hA3 AR play an important role in tumor proliferation. We designed and synthesized novel 1,3,5-triazine derivatives through amination and Suzuki coupling, and evaluated them for binding affinities to each hAR subtype. Compounds 9a and 11b showed good binding affinity to both hA1 and hA3 AR, while 9c showed the highest binding affinity to hA1 AR. In this study, we discovered that 9c inhibits cell viability, leading to cell death in lung cancer cell lines. Flow cytometry analysis revealed that 9c caused an increase in intracellular reactive oxygen species (ROS) and a depolarization of the mitochondrial membrane potential. The binding mode of 1,3,5-triazine derivatives to hA1 and hA3 AR were predicted by a molecular docking study.


Asunto(s)
Pirimidinas , Receptor de Adenosina A2A , Humanos , Simulación del Acoplamiento Molecular , Pirimidinas/química , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/química , Relación Estructura-Actividad , Triazinas/farmacología
18.
BMC Oral Health ; 22(1): 483, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368979

RESUMEN

BACKGROUND: Dentin hypersensitivity is a painful response to external stimuli applied to exposed dentinal tubules. Various toothpastes with active desensitizing ingredients for the relief of dentin hypersensitivity are commercially available. However, data from several studies suggest that the effects of desensitizing toothpastes are unstable and brief. This study aimed to investigate the effect of toothpastes containing CPNE7-derived oligopeptide (CPNE7-DP) and other active desensitizing ingredients in the dentin microleakage, tubule occlusion and tertiary dentin formation. METHODS: Using scanning electron microscopy (SEM), we evaluated the patency of dentinal tubules on the surface of human dentin disks after brushing experiments with the various toothpastes. Dentin was histologically evaluated in a hypersensitivity model of canine teeth, after the exposed dentin area was brushed for 6 weeks. The toothpaste used in group 1 (control) did not contain any desensitizing ingredients; that used in group 2 contained CPNE7-DP; Colgate Sensitive was used in group 3; and Sensodyne Rapid Relief was used in group 4. Finally, we conducted microleakage analysis to investigate the dentin sealing effect. The microleakage analysis data were subjected to one-way ANOVA and post-hoc Tukey tests (alpha = 0.05). RESULTS: In the SEM images, all four groups of teeth exhibited partial occlusion of the dentinal tubules on the tooth surface. In the in vivo hypersensitivity model, group 2 exhibited a newly formed tertiary dentin, whereas no new hard tissue formation was observed in groups 1, 3, and 4. Microleakage analysis revealed that the volume of dentinal fluid flow was significantly smaller in group 2 than in group 1. CONCLUSIONS: These results indicate that CPNE7-DP is a promising active ingredient with long-term dentin sealing effects.


Asunto(s)
Sensibilidad de la Dentina , Pastas de Dientes , Humanos , Pastas de Dientes/farmacología , Pastas de Dientes/uso terapéutico , Sensibilidad de la Dentina/tratamiento farmacológico , Dentina , Cepillado Dental/métodos , Fluoruro de Sodio , Microscopía Electrónica de Rastreo
19.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445307

RESUMEN

Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome-lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome-lysosome fusion.


Asunto(s)
Catepsina L/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Melanosomas/metabolismo , Animales , Catepsina L/genética , Hipoxia de la Célula/genética , Células Cultivadas , Regulación de la Expresión Génica , Melanocitos/metabolismo , Ratones , Células 3T3 NIH
20.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575913

RESUMEN

Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2) and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide RNAs (sg1-sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to 29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2 and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant differences in growth in a long-term living modified organism (LMO) field-test covering four seasons. Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Secuencia de Aminoácidos , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Quimera , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Plantas Modificadas Genéticamente , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA