Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Korean Med Sci ; 37(9): e71, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35257526

RESUMEN

Intravenous infusion flow regulators (IIFRs) are widely used devices but it is unknown how much the difference between the IIFR scale and the actual flow rate depends on the viscosity of the intravenous (IV) fluid. This study evaluated the effects of viscosity on the flow rate of five IV fluids (0.9% normal saline, Hartmann's solution, plasma solution-A, 6% hetastarch, and 5% albumin) when using IIFRs. The viscosity of crystalloids was 1.07-1.12 mPa·s, and the viscosities of 6% hetastarch and 5% albumin were 2.59 times and 1.74 times that of normal saline, respectively. When the IIFR scales were preset to 20, 100, and 250 mL/hr, crystalloids were delivered at the preset flow rate within a difference of less than 10%, while 6% hetastarch was delivered at approximately 40% of the preset flow rates and 5% albumin was approximately 80% transmitted. When delivering colloids, IIFRs should be used with caution.


Asunto(s)
Infusiones Intravenosas/instrumentación , Infusiones Intravenosas/normas , Viscosidad , Líquidos Corporales , Fluidoterapia
2.
Soft Matter ; 16(2): 428-434, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31799582

RESUMEN

Maturation and synchronisation of heart cells, including cardiomyocytes and fibroblasts, are essential to develop functional biomimetic cardiac tissues for regenerative medicine and drug discovery. Synchronisation of cells in the biomimetic cardiac tissue requires the structural integrity and functional maturation of cardiomyocytes with other cell types. However, it is challenging to synchronise the beating of macroscale cardiac tissues and induce maturation of cardiomyocytes derived from stem cells. Here, we developed a simple assembly technology to modulate cell-cell interactions by combining layer-by-layer (LBL) deposition and centrifugation of cells with collagen type I to control cell-cell interactions for the preparation of cardiac macro tissues (CMTs). We found that maturation of cardiomyocytes in CMTs was largely enhanced by growth factors FGF-4 and ascorbic acid, but synchronisation of cardiac beating required LBL deposition of cardiomyocytes and cardiac fibroblasts in addition to the growth factors during the maturation process. Our findings have important implications because incorporation of cardiac fibroblasts into the cardiomyocyte layer is a prerequisite for synchronised beating of macroscale cardiac tissues in addition to growth factors to facilitate maturation of stem cell-derived cardiomyocytes.


Asunto(s)
Fibroblastos/citología , Miocitos Cardíacos/citología , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Biomimética , Bioimpresión , Comunicación Celular , Colágeno Tipo I/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo
3.
Biophys J ; 110(12): 2729-2738, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27332131

RESUMEN

Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Modelos Biológicos , Resinas Acrílicas , Animales , Butadienos/farmacología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Recuento de Células , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Tamaño de la Célula , Colágeno Tipo I/metabolismo , Perros , Módulo de Elasticidad , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Nitrilos/farmacología , Periodicidad , Propiedades de Superficie
4.
Cardiology ; 128(1): 15-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24514589

RESUMEN

OBJECTIVES: Bradycardia is caused by loss-of-function mutations in potassium channels that regulate phase 3 repolarization of the cardiac action potential. The purpose of this study is to monitor the effects of potassium channel (KCNQ1) inhibition and to evaluate the effects of isoproterenol (ISO) and MgSO4 in restoring sinus rhythm in atrial cells. METHODS: Microelectrode array was used to analyze conduction velocity, voltage amplitude and cycle length of atrial cells (HL-1). A combination of ISO and MgSO4 was used to restore sinus rhythm in these cells. RESULTS: mRNA expression levels of KCNQ1 (42.2 vs. 100%, p < 0.0001), connexin 43 (29.6 vs. 100%, p = 0.0033), atrial natriuretic peptide (31.0 vs. 100%, p = 0.0030), cardiac actin (38.2 vs. 100%, p < 0.0001) and α-myosin heavy chain (31.2 vs. 100%, p = 0.00254) were significantly lower in the KCNQ1 gene-inhibited group compared to the control group. When treated with MgSO4 (1 mM) and ISO (10 µM), conduction velocity (0.0208 ± 0.0036 vs. 0.0086 ± 0.0014 m/s, p = 0.0004) and voltage amplitude (1,210.78 ± 65.81 vs. 124.1 ± 13.30 µV, p < 0.0001) were higher, and cycle length (431.55 ± 2.05 vs. 1,015.15 ± 4.31 ms, p < 0.0001) was shorter than in the gene-inhibited group. CONCLUSION: Inhibition of sinus rhythm in the bradycardia cell model was recovered by treatment with ISO and MgSO4, demonstrating the potency of combination therapy in the treatment of bradycardia.


Asunto(s)
Bradicardia/tratamiento farmacológico , Cardiotónicos/uso terapéutico , Isoproterenol/uso terapéutico , Canal de Potasio KCNQ1/metabolismo , Sulfato de Magnesio/uso terapéutico , Animales , Bradicardia/metabolismo , Cardiotónicos/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Isoproterenol/farmacología , Canal de Potasio KCNQ1/genética , Sulfato de Magnesio/farmacología , Ratones , Microelectrodos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
5.
J Biomol Struct Dyn ; 42(1): 314-325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995074

RESUMEN

Due to its clinical and cosmetic applications, investigators have paid attention to tyrosinase (TYR) inhibitor development. In this study, a TYR inhibition study with acarbose was investigated to gain insights into the regulation of the catalytic function. Biochemical assay results indicated that acarbose was turned to be an inhibitor of TYR in a reversible binding manner and probed as a distinctive mixed-type inhibitor via measurement of double-reciprocal kinetic (Ki = 18.70 ± 4.12 mM). Time-interval kinetic measurement indicated that TYR catalytic function was gradually inactivated by acarbose in a time-dependent behavior displaying with a monophase process that was evaluated by semi-logarithmic plotting. Spectrofluorimetric measurement by integrating with a hydrophobic residue detector (1-anilinonaphthalene-8-sulfonate) showed that the high dose of acarbose derived a conspicuous local structural deformation of the TYR catalytic site pocket. Computational docking simulation showed that acarbose bound to key residues such as HIS61, TYR65, ASN81, HIS244, and HIS259. Our study extends an understanding of the functional application of acarbose and proposes that acarbose is an alternative candidate drug for a whitening agent via direct retardation of TYR catalytic function and it would be applicable for the relevant skin hyperpigmentation disorders concerning the dermatologic clinical purpose.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Acarbosa/farmacología , Inhibidores Enzimáticos/química , Dominio Catalítico , Simulación del Acoplamiento Molecular , Cinética
6.
Adv Healthc Mater ; 13(19): e2400235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569198

RESUMEN

Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Nanogeles , Animales , Humanos , Inmunoterapia/métodos , Femenino , Ratones , Nanogeles/química , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Ratones Endogámicos BALB C , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Células MCF-7 , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/química
7.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189319

RESUMEN

Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.Communicated by Ramaswamy H. Sarma.

8.
ACS Omega ; 9(11): 13418-13426, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524497

RESUMEN

The detection of prothrombotic markers is crucial for understanding thromboembolism and assessing the effectiveness of anticoagulant drugs. α-Thrombin is a marker that plays a critical role in the coagulation cascade process. However, the detection of this enzymatic molecule was hindered by the absence of an efficient modality in the clinical environment. Previously, we reported that one α-thrombin interacts with two α-chains of glycoprotein Ib (GPIbα), i.e., multivalent protein binding (MPB), using bioresponsive hydrogel nanoparticles (nanogels) and optical microscopy. In this study, we demonstrated that GPIbα-mediated platforms led to the highly sensitive and quantitative detection of α-thrombin in various diagnostic systems. Initially, a bioresponsive nanogel-based surface plasmon resonance (nSPR) assay was developed that responds to the MPB of α-thrombin to GPIbα. The use of GPIbα for the detection of α-thrombin was further validated using the enzyme-linked immunosorbent assay, which is a gold-standard protein detection technique. Additionally, GPIbα-functionalized latex beads were developed to perform latex agglutination (LA) assays, which are widely used with hospital diagnostic instruments. Notably, the nSPR and LA assays exhibited a nearly 1000-fold improvement in sensitivity for α-thrombin detection compared to our previous optical microscopy method. The superiority of our GPIbα-mediated platforms lies in their stability for α-thrombin detection through protein-protein interactions. By contrast, assays relying on α-thrombin enzymatic activity using substrates face the challenge of a rapid decrease in postsample collection. These results suggested that the MPB of α-thrombin to GPIbα is an ideal mode for clinical α-thrombin detection, particularly in outpatient settings.

9.
Cytotherapy ; 15(5): 542-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23352461

RESUMEN

BACKGROUND AIMS: To successfully treat myocardial infarction (MI), blood must be resupplied to the ischemic myocardium by inducing angiogenesis. Many studies report enhanced angiogenesis using stem cells; however, the therapeutic efficacy of cell transplant remains low because transplanted cells may not survive, be retained at the site of transplant, or develop into vascular tissue. In this study, we assessed the therapeutic potential of three-dimensional cell masses (3DCM) composed of human adipose-derived stem cells (hASC) in a rat MI model. METHODS: For formation of 3DCM, hASC were cultured on a substrate with immobilized fibroblast growth factor 2. The morphology and phenotypes of 3DCM were analyzed 1 day after culture. The cells (hASC and 3DCM, 5 × 10(5) cells) were injected into ischemic regions after ligation of the left coronary artery (n = 6 in each group). Cell retention ratio, therapeutic efficacy and vascularization were evaluated 4 weeks after transplant. RESULTS: A spheroid-type 3DCM, which included vascular cells (CD34(+)/CD31(+)/KDR(+)/α-SMA(+)) with high production of human vascular endothelial growth factor, was obtained. Infarct size and cardiomyocyte apoptosis were reduced in the 3DCM-injected group compared with the hASC-injected group. The retention ratio of hASC was 14-fold higher in the 3DCM-injected group. Many transplanted cells differentiated into endothelial and smooth muscle cells and formed vascular networks incorporated into host vessels. CONCLUSIONS: Transplant of 3DCM may be useful for angiogenic cell therapy to treat MI.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Miocardio/citología , Neovascularización Fisiológica , Células Madre/citología , Adipocitos/metabolismo , Adipocitos/trasplante , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Vasos Coronarios/citología , Humanos , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Ratas , Trasplante de Células Madre , Células Madre/metabolismo
10.
Prep Biochem Biotechnol ; 43(3): 271-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23379274

RESUMEN

Microwaves have been used as a mutant agent to select mutant strains with high-yield and high-purity pigment. Mass spectrometry and nuclear magnetic resonance spectroscopic techniques were used to elucidate the structures of the pigment. High-performance liquid chromatography was used to measure pigment purity. The analysis of the mutant strain showed that pigment yield increased by 109% and was 98% pure. Prodigiosin in ethanol solution had good stability under ambient temperature and natural indoor light. However, prodigiosin rapidly decomposed under intense sunlight. Prodigiosin is an ecological colorant to dye fabrics, including synthetic and natural fibers. Synthetic fabrics dyed with prodigiosin, such as polyamide and acrylic, have high colorfastness to washing (≥4th grade) and antimicrobial properties (>90%) against Escherichia coli and Staphylococcus aureus. Antimicrobial properties were significantly different between synthetic and natural fabrics. The mutant strain Serratia marcescens jx1-1, with high prodigiosin yield and purity, has promising prospects in food, cosmetic, and textile industries.


Asunto(s)
Antibacterianos/farmacología , Colorantes/química , Prodigiosina/biosíntesis , Prodigiosina/farmacología , Serratia marcescens/genética , Serratia marcescens/metabolismo , Escherichia coli/efectos de los fármacos , Microondas , Mutación , Prodigiosina/química , Prodigiosina/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Industria Textil
11.
J Biomol Struct Dyn ; 41(11): 5138-5151, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35612882

RESUMEN

Euphausia superba (Antarctic krill) serine protease (ESP) was investigated to gain insights into the activity-structural relationship, folding behavior, and regulation of the catalytic function. We purified ESP from the krill muscle and characterized biochemical distinctions via enzyme kinetics. Studies of inhibition kinetics and unfolding in the presence of a serine residue modifier, such as phenylmethanesulfonyl fluoride, were conducted. Structural characterizations were measured by spectrofluorimetry, including 1-anilinonaphthalene-8-sulfonate dye labeling for hydrophobic residues. The computational simulations such as docking and molecular dynamics were finally conducted to detect key residues and folding behaviors in a nano-second range. The kinetic parameters of ESP were measured as KmBANH = 0.97 ± 0.15 mM and kcat/KmBANH = 4.59 s-1/mM. The time-interval kinetics measurements indicated that ESP inactivation was transformed from a monophase to a biphase process to form a thermodynamically stable state. Spectrofluorimetry measurements showed that serine is directly connected to the regional folding of ESP. Several osmolytes such as proline and glycine only partially protected the inactive form of ESP by serine modification. Computational molecular dynamics and docking simulations showed that three serine residues (Ser183, Ser188, and Ser207) and Cys184, Val206, and Gly209 are key residues of catalytic functions. Our study revealed the functional roles of serine residues as key residues of catalytic function at the active site and of the structural conformation as key folding factors, where ESP displays a flexible property of active site pocket compared to the overall structure.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Euphausiacea , Animales , Euphausiacea/química , Serina Proteasas , Serina Endopeptidasas , Regiones Antárticas , Serina
12.
Biomed Opt Express ; 14(2): 577-592, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36874497

RESUMEN

Biomedical researchers use optical coherence microscopy (OCM) for its high resolution in real-time label-free tomographic imaging. However, OCM lacks bioactivity-related functional contrast. We developed an OCM system that can measure changes in intracellular motility (indicating cellular process states) via pixel-wise calculations of intensity fluctuations from metabolic activity of intracellular components. To reduce image noise, the source spectrum is split into five using Gaussian windows with 50% of the full bandwidth. The technique verified that F-actin fiber inhibition by Y-27632 reduces intracellular motility. This finding could be used to search for other intracellular-motility-associated therapeutic strategies for cardiovascular diseases.

13.
Anim Reprod Sci ; 249: 107198, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36791599

RESUMEN

The soft-shelled turtle, Pelodiscus sinensis, is an important economic aquaculture species. Its reproduction exhibits seasonality; however, there is a lack of systematic studies focused on sperm maturation and epididymal storage. The testes and epididymides of P. sinensis were sampled from March to December. The seasonal reproduction and maturation of the spermatozoa were examined by anatomy, hematoxylin and eosin staining, AB-PAS staining, and immunohistochemistry. Spermatogenesis exhibited obvious seasonality in P. sinensis. It was found that the spermatogenic epithelium was most active during June to September, whereas the diameter of the epididymal tubules was smallest during June to October. As key enzymes of ATP metabolism, creatine kinases were highly expressed in the epididymal tubule epithelium during the breeding season, which may be important for the regulation of sperm maturation. In addition, the epididymal tubule epithelium changed with the season in June to September, the epididymal tubule epithelium proliferated to form villous structures, and secreted a large number of glycoproteins, which may be related to the rapid maturation of sperm during the breeding season. In conclusion, this study provided insights into the spermatogenesis of P. sinensis through histological analysis and enriched our understanding of reproduction in reptiles.


Asunto(s)
Creatina Quinasa , Epidídimo , Espermatogénesis , Tortugas , Estaciones del Año , Masculino , Animales , Epidídimo/citología , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , Expresión Génica/fisiología , Epitelio/anatomía & histología , Epitelio/crecimiento & desarrollo
14.
Reprod Fertil ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852996

RESUMEN

The Chinese soft-shelled turtle, Pelodiscus sinensis (Reptilia: Trionychidae) is a typical seasonal breeding species and its spermatogenesis pattern is complex. In this study, the process of sperm cell development was studied using histology. The process of sperm cell development may be divided into six stages based on a combination of different cell types in the seminiferous epithelium. A close examination revealed two patterns of sperm cell development in the seminiferous tubules during the breeding season. The first is a normal sperm cell development pattern, in which the process of sperm cell development and maturation are completed in the seminiferous epithelium without round spermatozoa in the lumen. The second is rapid sperm cell development, in which the first batches of round spermatozoa fall off the seminiferous epithelium before they mature, thus beginning a second batch of sperm cell development. The round sperm cells are shed into the lumen and further mature in the seminiferous tubules and epididymis. This rapid sperm cell development process of the Chinese soft-shelled turtle is rare in other vertebrate species and may be an adaptation to cope with seasonal breeding. The results of this study provide insight into the theory of seasonal reproduction in reptiles.

15.
J Control Release ; 364: 420-434, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918486

RESUMEN

Endogenous stem cell-based in-situ tissue regeneration has recently gained considerable attention. In this study, we investigated the potential of a chemokine, SDF-1-mimic peptide (SMP), to promote endogenous stem cell-based in-situ wound healing. Our approach involved the development of a click crosslinked hyaluronic acid scaffold loaded with SMP (Cx-HA + SMP) to release SMP in a wound site. The Cx-HA scaffold maintained its structural integrity throughout the wound healing process and also captured endogenous stem cells. Gradual SMP release from the Cx-HA + SMP scaffold established a concentration gradient at the wound site. In animal wound experiments, Cx-HA + SMP exhibited faster wound contraction compared to Cx-HA + SDF-1. Additionally, Cx-HA + SMP resulted in approximately 1.2-1.6 times higher collagen formation compared to Cx-HA + SDF-1. SMP released from the Cx-HA + SMP scaffold promoted endogenous stem cell migration to the wound site 1.5 times more effectively than Cx-HA + SDF-1. Moreover, compared to Cx-HA + SDF-1, Cx-HA + SMP exhibited higher expression of CXCR4 and CD31, as well as the positive markers CD29 and CD44 for endogenous stem cells. The endogenous stem cells that migrated through Cx-HA + SMP regenerated into wound skin with minimal scar granule formation, similar to the normal tissue. In conclusion, SMP peptide offers greater convenience, while efficiently attracting migrating endogenous stem cells compared to the SDF protein. Our findings suggest that Cx-HA + SMP scaffolds hold promise as a strategy to enhance endogenous stem cell-based in-situ wound healing.


Asunto(s)
Ácido Hialurónico , Cicatrización de Heridas , Animales , Movimiento Celular , Células Madre/metabolismo , Quimiocina CXCL12
16.
J Biomol Struct Dyn ; 41(4): 1388-1402, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34939522

RESUMEN

The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Creatina , Tortugas , Animales , Femenino , Creatina/metabolismo , Tortugas/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Hígado , Simulación de Dinámica Molecular
17.
ACS Appl Polym Mater ; 5(3): 2195-2202, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37552750

RESUMEN

The efficacy of coronavirus disease 2019 (COVID-19) vaccination is closely related to the serum levels of SARS-CoV-2-neutralizing antibodies (NAb) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Therefore, the rapid and quantitative measurement of SARS-CoV-2 NAb in the sera of vaccinated individuals is essential to develop an effective vaccine and further achieve population immunity, that is, herd immunity. The plaque reduction neutralization test, the gold standard for NAb effectiveness in serological tests, is accurate but requires biosafety level 3 facilities because of the use of the virus, which hampers its application in common laboratories and clinical practice. Here, we developed a bioresponsive nanogel-based surface plasmon resonance (nSPR) platform that detects SARS-CoV-2 NAb in clinical samples without complicated pretreatment. We found that multivalent protein binding (MPB) between the nanogel-conjugated RBD protein and SARS-CoV-2 NAb yields significantly enhanced SPR signals compared to the nonspecific interference from serum proteins in the nSPR assay. The excellence of our nanogel-based SARS-CoV-2 NAb test is due to its selectivity for NAb, with resistance to all other proteins, allowing the rapid detection and quantification of NAbs in each individual. Importantly, this nSPR assay provides a NAb detection platform for easier and safer COVID-19 vaccination strategies.

18.
Nat Commun ; 14(1): 2263, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081012

RESUMEN

As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.


Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Elastómeros/química , Electrónica , Prótesis e Implantes
19.
Cells ; 12(16)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37626839

RESUMEN

The generation of mature and vascularized human pluripotent stem cell-derived cardiac organoids (hPSC-COs) is necessary to ensure the validity of drug screening and disease modeling. This study investigates the effects of cellular aggregate (CA) stemness and self-organization on the generation of mature and vascularized hPSC-COs and elucidates the mechanisms underlying cardiac organoid (CO) maturation and vascularization. COs derived from 2-day-old CAs with high stemness (H-COs) and COs derived from 5-day-old CAs with low stemness (L-COs) were generated in a self-organized microenvironment via Wnt signaling induction. This study finds that H-COs exhibit ventricular, structural, metabolic, and functional cardiomyocyte maturation and vessel networks consisting of endothelial cells, smooth muscle cells, pericytes, and basement membranes compared to L-COs. Transcriptional profiling shows the upregulation of genes associated with cardiac maturation and vessel formation in H-COs compared with the genes in L-COs. Through experiments with LIMK inhibitors, the activation of ROCK-LIMK-pCofilin via ECM-integrin interactions leads to cardiomyocyte maturation and vessel formation in H-COs. Furthermore, the LIMK/Cofilin signaling pathway induces TGFß/NODAL and PDGF pathway activation for the maturation and vascularization of H-COs. The study demonstrates for the first time that LIMK/Cofilin axis activation plays an important role in the generation of mature and vascularized COs.


Asunto(s)
Células Endoteliales , Organoides , Humanos , Miocitos Cardíacos , Vía de Señalización Wnt , Factores Despolimerizantes de la Actina , Matriz Extracelular , Neovascularización Patológica , Integrinas
20.
Adv Sci (Weinh) ; 10(20): e2301787, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37170679

RESUMEN

Axis formation and related spatial patterning are initiated by symmetry breaking during development. A geometrically confined culture of human pluripotent stem cells (hPSCs) mimics symmetry breaking and cell patterning. Using this, polarized spinal cord organoids (pSCOs) with a self-organized dorsoventral (DV) organization are generated. The application of caudalization signals promoted regionalized cell differentiation along the radial axis and protrusion morphogenesis in confined hPSC colonies. These detached colonies grew into extended spinal cord-like organoids, which established self-ordered DV patterning along the long axis through the spontaneous expression of polarized DV patterning morphogens. The proportions of dorsal/ventral domains in the pSCOs can be controlled by the changes in the initial size of micropatterns, which altered the ratio of center-edge cells in 2D. In mature pSCOs, highly synchronized neural activity is separately detected in the dorsal and ventral side, indicating functional as well as structural patterning established in the organoids. This study provides a simple and precisely controllable method to generate spatially ordered organoids for the understanding of the biological principles of cell patterning and axis formation during neural development.


Asunto(s)
Tipificación del Cuerpo , Células Madre Pluripotentes , Humanos , Médula Espinal , Morfogénesis , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA