Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 18(24): e2201134, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35506524

RESUMEN

All-solid-state thin-film batteries (ASSTFBs) are promising next-generation battery systems, but critical challenges such as low-energy-density remain. The low-energy-density might persist with low-voltage cathode material; hence, high-voltage cathode material development is required. While LiNi0.5 Mn1.5 O4 (LNM) has been considered a promising high-voltage cathode material. This study investigates the electrochemical properties of LNM thin films based on the correlation between the ordering of cations (Ni and Mn) and oxygen vacancies (VO ). The authors find that the cations' order changes from a disordered structure to an ordered structure with an increased oxygen flow rate during deposition. The optimized LNM fabricated using a 60:40 ratio of Ar to O2 exhibits the highest rate capability (321.4 mAh cm-3 @ 20 C) and most prolonged cycle performance for 500 cycles. The role of VO within the LNM structure and the lower activation energy of ordered LNM compared to disordered LNM through first-principles density functional theory calculations is elucidated. The superior electrochemical performance (276.9 mAh cm-3 @ 0.5 C) and high cyclic performance (at 93.9%, 500 cycles) are corroborated by demonstrating flexible ASSTFB cells using LiPON solid-state electrolyte and thin-film Li anode. This work paves the way for future research on the fabrication of high-performance flexible ASSTFBs.

2.
Anal Chem ; 92(19): 13434-13442, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32865398

RESUMEN

Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols were provided to participants. CNCs were imaged and the size of individual particles was analyzed in 10 participating laboratories that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and distribution width and asymmetries for the various datasets. Consensus values were obtained by modeling the variation between laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation, and shape factor of 95.8, 38.2, and 6.3 nm for length and 7.7, 2.2, and 2.9 nm for width, respectively. Comparison of the degree of overlap between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in measured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining are the main factors that lead to variations in measured length and width between laboratories.

3.
Small ; 16(13): e2000081, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32147958

RESUMEN

2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co-Ru-MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T' phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm-2 and Tafel slopes of 55 and 50 mV decade-1 in 1.0 m KOH, respectively. Analysis of X-ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T' phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co-doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.

4.
Adv Mater ; 36(14): e2309183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160321

RESUMEN

Development of miniaturized thin-film lithium-ion batteries (TF-LIBs) using vacuum deposition techniques is crucial for low-scale applications, but addressing low energy density remains a challenge. In this work, structures analogous to SiOx-based thin-film electrodes are designed with close resemblance to traditional LIB slurry formulations including active material, conductive agent, and binder. The thin-film is produced using mid-frequency sputtering with a single hybrid target consisting of SiOx nanoparticles, carbon nanotubes, and polytetrafluoroethylene. The thin-film SiOx/PPFC (plasma-polymerized fluorocarbon) involves a combination of SiOx and conductive carbon within the PPFC matrix. This results in enhanced electronic conductivity and superior elasticity and hardness in comparison to a conventional pure SiOx-based thin-film. The electrochemical performance of the half-cell consisting of thin-film SiOx/PPFC demonstrates remarkable cycling stability, with a capacity retention of 74.8% up to the 1000th cycle at 0.5 C. In addition, a full cell using the LiNi0.6Co0.2Mn0.2O2 thin-film as the cathode material exhibits an exceptional initial capacity of ≈120 mAh g-1 at 0.1 C and cycle performance, marked by a capacity retention of 90.8% from the first cycle to the 500th cycle at a 1 C rate. This work will be a stepping stone for the AM/CB/B composite electrodes in TF-LIBs.

5.
Nanotechnology ; 24(50): 505601, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24284655

RESUMEN

A synthetic approach for fabricating compositionally graded multishell nanocrystal quantum dots (NQDs) from cubic CdSe is presented. The structural shapes with each shell formation were examined using scanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray spectroscopy and electron energy loss spectroscopy (EELS). The optical properties probed via time-resolved spectroscopy further revealed detailed carrier behavior at the core/graded shell interface. A highly luminescing stable optical device was built using our graded multishell NQDs.

6.
Phys Chem Chem Phys ; 15(6): 1788-92, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23258449

RESUMEN

We report the origin of the improvement of the power conversion efficiency (PCE) of hybrid thin-film solar cells when a soluble C(60) derivative, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), is introduced as a hole-blocking layer. The PCBM layer could establish better interfacial contact by decreasing the reverse dark-saturation current density, resulting in a decrease in the probability of carrier recombination. The PCE of this optimized device reached a maximum value of 8.34% and is the highest yet reported for hybrid thin-film solar cells.

7.
J Nanosci Nanotechnol ; 13(6): 4189-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23862471

RESUMEN

A heterojunction of Al-doped ZnO (AZO) and Si was applied as a photodiode. A Co-sputtering system was used to deposit a quality AZO film following an n-type Si thin film coating. Al is an n-doping element for ZnO and thus the Al content significantly controls the mobility and the crystalline structure of AZO films. In order to provide the highest mobility, the optimum Al-content was found to be 5.22 wt%. X-ray diffraction analysis also showed a release of the compressive stress for the Al-5.22 wt% AZO film. Due to the excellent electrical conductivity of the AZO film, the heterojunction diode showed an enhanced rectifying ratio of 87.7 from 59.9 of the bare Si diode according to the reduction of the series resistance. This scheme may provide a route to reducing the contact resistance and subsequently improving photovoltaic devices.

8.
Microsc Microanal ; 19 Suppl 5: 145-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920194

RESUMEN

The growth of high-quality indium (In)-rich In(X)Ga(1-X)N alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich In(X )Ga(1-X)N alloys are inevitable phenomena that degrade the crystal quality of In-rich In(X)Ga(1-X)N layers. Composition modulations were observed in the In-rich In(X)Ga(1-X)N layers with various In compositions. The In composition modulation in the In X Ga1-X N alloys formed in samples with In compositions exceeding 47%. The misfit strain between the InGaN layer and the GaN buffer retarded the composition modulation, which resulted in the formation of modulated regions 100 nm above the In(0.67)Ga(0.33)N/GaN interface. The composition modulations were formed on the specific crystallographic planes of both the {0001} and {0114} planes of InGaN.

9.
Microsc Microanal ; 19 Suppl 5: 198-201, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920205

RESUMEN

We report the synthesis of carbon nanowires (CNWs) via chemical vapor deposition using catalytic decomposition of ethanol on nanosized transition metals such as Co, Fe, and Ni. Dip-coating process was used for the formation of catalytic nanoparticles, inducing the growth of CNWs on the surface of the carbon fiber paper (CFP). The liquid ethanol used as carbon source was atomized by an ultrasonic atomizer and subsequently flowed into the reactor that was heated up to a synthesis temperature of 600-700°C. Microscopic images show that CNWs of <50 nm were densely synthesized on the surface of the CFP. Raman spectra reveal that a higher synthesis temperature leads to the growth of higher crystalline CNWs. In addition, we demonstrate the successful decoration of platinum nanoparticles on the surface of the prepared CNWs/CFP using the electrochemical deposition technique.

10.
Nano Lett ; 12(8): 4194-9, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22783921

RESUMEN

A recent theoretical study suggested that Ag(2)Te is a topological insulator with a highly anisotropic Dirac cone. Novel physics in the topological insulators with an anisotropic Dirac cone is anticipated due to the violation of rotational invariance. From magnetoresistance (MR) measurements of Ag(2)Te nanowires (NWs), we have observed Aharanov-Bohm (AB) oscillation, which is attributed to the quantum interference of electron phase around the perimeter of the NW. Angle and temperature dependences of the AB oscillation indicate the existence of conducting surface states in the NWs, confirming that Ag(2)Te is a topological insulator. For Ag(2)Te nanoplates (NPLs), we have observed high carrier mobility exceeding 22,000 cm(2)/(V s) and pronounced Shubnikov-de Haas (SdH) oscillation. From the SdH oscillation, we have obtained Fermi state parameters of the Ag(2)Te NPLs, which can provide valuable information on Ag(2)Te. Understanding the basic physics of the topological insulator with an anisotropic Dirac cone could lead to new applications in nanoelectronics and spintronics.

11.
Micromachines (Basel) ; 14(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838148

RESUMEN

Most microsensors are composed of devices and covers. Due to the complicated structure of the cover and various other requirements, it difficult to use wafer-level packaging with such microsensors. In particular, for monolithic microsensors combined with read-out ICs, the available process margins are further reduced due to the thermal and mechanical effects applied to IC wafers during the packaging process. This research proposes a low-temperature, wafer-level vacuum packaging technology based on Cu-Sn bonding and nano-multilayer getter materials for use with microbolometers. In Cu-Sn bonding, the Cu/Cu3Sn/Cu microstructure required to ensure reliability can be obtained by optimizing the bonding temperature, pressure, and time. The Zr-Ti-Ru based nanomultilayer getter coating inside the cap wafer with high step height has been improved by self-aligned shadow masking. The device pad, composed of bonded wafer, was opened by wafer grinding, and the thermoelectrical properties were evaluated at the wafer-level. The bonding strength and vacuum level were characterized by a shear test and thermoelectrical test using microbolometer test pixels. The vacuum level of the packaged samples showed very narrow distribution near 50 mTorr. This wafer-level packaging platform could be very useful for sensor development whereby high reliability and excellent mechanical/optical performance are both required. Due to its reliability and the low material cost and bonding temperature, this wafer-based packaging approach is suitable for commercial applications.

12.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37366002

RESUMEN

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Nitrógeno/química , Sulfatos , Puntos Cuánticos/química , Azufre/química
13.
J Nanosci Nanotechnol ; 12(2): 1371-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22629959

RESUMEN

Thin film Schottky solar cells were fabricated without doping processes, which may provide an alternative approach to the conventional thin film solar cells in the n-i-p configuration. A thin Co layer was coated on a substrate, which worked as a back contact metal and then Si film was grown above it. Deposition condition may modulate the Si film structure to be a fully amorphous Si (a-Si) or a mixing of microcrystalline Si (mc-Si) and a-Si. A thin Au layer was deposited above the grown Si films, which formed a Schottky junction. Two types of Schottky solar cells were prepared on a fully a-Si film and a mixing of mc-Si and a-Si film. Under one sun illumination, the mixing of mc-Si and a-Si device provided 35% and 68.4% enhancement in the open circuit voltage and fill factor compared to that of the amorphous device.

14.
ACS Nano ; 16(2): 1826-1835, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34965087

RESUMEN

The ubiquitous field-effect transistor (FET) is widely used in modern digital integrated circuits, computers, communications, sensors, and other applications. However, reliable biological FET (bio-FET) is not available in real life due to the rigorous requirement for highly sensitive and selective bio-FET fabrication, which remains a challenging task. Here, we report an ultrasensitive and selective bio-FET created by the nanorings of molybdenum disulfide (MoS2) nanopores inspired by nuclear pore complexes. We characterize the nanoring of MoS2 nanopores by scanning transmission electron microscopy, Raman, and X-ray photoelectron spectroscopy spectra. After fabricating MoS2 nanopore rings-based bio-FET, we confirm edge-selective functionalization by the gold nanoparticle tethering test and the change of electrical signal of the bio-FET. Ultrahigh sensitivity of the MoS2 nanopore edge rings-based bio-FET (limit of detection of 1 ag/mL) and high selectivity are accomplished by effective coupling of the aptamers on the nanorings of the MoS2 nanopore edge for cortisol detection. We believe that MoS2 nanopore edge rings-based bio-FET would provide platforms for everyday biosensors with ultrahigh sensitivity and selectivity.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoporos , Oro , Molibdeno/química
15.
ACS Appl Mater Interfaces ; 14(11): 13490-13498, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258276

RESUMEN

Zinc oxynitride (ZnON) has the potential to overcome the performance and stability limitations of current amorphous oxide semiconductors because ZnON-based thin-film transistors (TFTs) have a high field-effect mobility of 50 cm2/Vs and exceptional stability under bias and light illumination. However, due to the weak zinc-nitrogen interaction, ZnON is chemically unstable─N is rapidly volatilized in air. As a result, recent research on ZnON TFTs has focused on improving air stability. We demonstrate through experimental and first-principles studies that the ZnF2/ZnON bilayer structure provides a facile way to achieve air stability with carrier controllability. This increase in air stability (e.g., nitrogen non-volatilization) occurs because the ZnF2 layer effectively protects the atomic mixing between ZnON and air, and the decrease in the ZnON carrier concentration is caused by a shallow-to-deep electronic transition of nitrogen deficiency diffused from ZnON into the interface. Further, the TFT based on the ZnF2/ZnON bilayer structure enables long-term air stability while retaining an optimal switching property of high field-effect mobility (∼100 cm2/Vs) even at a relatively low post-annealing temperature. The ZnF2/ZnON-bilayer TFT device exhibits fast switching behavior between 1 kHz and 0.1 MHz while maintaining a stable and clear switching response, paving the way for next-generation high-speed electronic applications.

16.
J Nanosci Nanotechnol ; 11(5): 4347-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21780455

RESUMEN

Lead chalcogenide nanocrystalline materials offer possibilities of improving the efficiency of various optoelectric/thermoelectric applications, especially in solar cells, by generating more carriers with incoming photons, or by extending the bandgap toward the infra-red region. In this work, we suggest the synthetic approach of creating extended PbSe structures which shows better performances when incorporated into an electric device. Firstly, we synthesized monodisperse cubic-structured single-crystalline lead selenide nanocrystal quantum dots using lead acetate and oleic acid in non-coordinating solvent without additional surfactants. Also, single-crystal cubic PbSe nanowires were synthesized in a mixture of surfactants such as trioctylphosphine and phenyl ether. Morphologies of wires and dots were precisely controlled via reaction temperature and the surface ligands. Phenyl ether was found to facilitate the oriented attachment. Further, current-voltage characteristics of drop-casted 2D arrays of nanocrystalline materials were examined.

17.
Nano Lett ; 10(2): 597-602, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20039695

RESUMEN

Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

18.
ACS Nano ; 15(3): 5467-5477, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33703885

RESUMEN

Earth-abundant transition metal dichalcogenide nanosheets have emerged as an excellent catalyst for electrochemical water splitting to generate H2. Alloying the nanosheets with heteroatoms is a promising strategy to enhance their catalytic performance. Herein, we synthesized hexagonal (2H) phase Mo1-xNbxSe2 nanosheets over the whole composition range using a solvothermal reaction. Alloying results in a variety of atomic-scale crystal defects such as Se vacancies, metal vacancies, and adatoms. The defect content is maximized when x approaches 0.5. Detailed structure analysis revealed that the NbSe2 bonding structures in the alloy phase are more disordered than the MoSe2 ones. Compared to MoSe2 and NbSe2, Mo0.5Nb0.5Se2 exhibits much higher electrocatalytic performance for hydrogen evolution reaction. First-principles calculation was performed for the formation energy in the models for vacancies and adatoms, supporting that the alloy phase has more defects than either NbSe2 or MoSe2. The calculation predicted that the separated NbSe2 domain at x = 0.5 favors the concurrent formation of Nb/Se vacancies and adatoms in a highly cooperative way. Moreover, the Gibbs free energy along the reaction path suggests that the enhanced HER performance of alloy nanosheets originates from the higher concentration of defects that favor H atom adsorption.

19.
ACS Nano ; 15(3): 4561-4575, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33629830

RESUMEN

In accordance with the fourth industrial revolution (4IR), thin-film all-solid-state batteries (TF-ASSBs) are being revived as the most promising energy source to power small electronic devices. However, current TF-ASSBs still suffer from the perpetual necessity of high-performance battery components. While every component, a series of a TF solid electrolyte (i.e., lithium phosphorus oxynitride (LiPON)) and electrodes (cathode and Li metal anode), has been considered vital, the lack of understanding of and ability to ameliorate the cathode (or anode)-electrolyte interface (CEI) (or AEI) has impeded the development of TF-ASSBs. In this work, we suggest an ensemble design of TF-ASSBs using LiPON (500 nm), an amorphous TF-V2O5-x cathode with oxygen vacancies (Ovacancy), a thin evaporated Li anode (evp-Li) with a thickness of 1 µm, and an artificial ultrathin Al2O3 layer between evp-Li and LiPON. Well-defined Ovacancy sites, such as O(II)vacancy and O(III)vacancy, in amorphous TF-V2O5-x not only allow isotropic Li+ diffusion at the CEI but also enhance both the ionic and electronic conductivities. For the AEI, we employed protective Al2O3, which was specially sputtered using the facing target sputtering (FTS) method to form a homogeneous layer without damage from plasma. In regard to the contact with evp-Li, interfacial stability, electrochemical impedance, and battery performance, the nanometric Al2O3 layers (1 nm) were optimized at different temperatures (40, 60, and 80 °C). The TF-ASSB cell containing Al2O3 (1 nm) delivers a high specific capacity of 474.01 mAh cm-3 under 60 °C at 2 C for the 400th cycle, and it achieves a long lifespan as well as ultrafast rate capability levels, even at 100 C; these results were comparable to those of TF Li-ion battery cells using a liquid electrolyte. We demonstrated the reaction mechanism at the AEI utilizing time-of-flight secondary ion mass spectrometry (TOF-SIMS) and molecular dynamics (MD) simulations for a better understanding. Our design provides a signpost for future research on the rational structure of TF-LIBs.

20.
Nanoscale Adv ; 3(3): 710-715, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133848

RESUMEN

The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO2 nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS2 layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS2 were conformally grown on the NP-patterned SiO2/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS2 layers on the SiO2 NPs were larger than those observed from a flat SiO2 surface. For 100 nm-SiO2/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS2 layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS2 layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA