Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Ophthalmol ; 26(2): 108-120, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36239227

RESUMEN

OBJECTIVE: The aim of this study was to describe the placement of subpalpebral lavage (SPL) systems in 12 dogs (15 eyes) intolerant of topical ocular medications to assess the suitability, complications encountered and owner perception of use. ANIMALS STUDIED: Retrospective review of dogs that underwent SPL placement for treatment of ocular disease at the Ophthalmology Department, University of Bristol Small Animal Hospital between 2017 and 2021. PROCEDURE(S): Data recorded included signalment, history, diagnosis, treatment, reason for SPL placement, uni- or bilateral placement, duration of placement, complications, and outcome. Owner perception was assessed using an online questionnaire. Statistical analysis included McNemar and Wilcoxon signed-ranks tests. RESULTS: Twelve dogs (15 eyes) underwent SPL placement. Eleven owners completed the online questionnaire. Corneal ulceration was the most common disease requiring SPL placement (n = 13/15 eyes, 86.7%). Most cases received multimodal topical therapy (n = 9/15 eyes, 60.0%) via SPL. Owners administered medication 6.63 times daily via SPL (range 1-16 applications/day). All dogs requiring ongoing topical medication (n = 8/12, 66.7%) were trained to accept direct administration during SPL treatment. Statistically significant improvements in medication compliance, ease of application, and reduced perceived risk of iatrogenic ocular injury were reported by owners (p-value = .001, .004, and .031 respectively). Minor complications were infrequently reported but an excellent outcome was achieved for all eyes. CONCLUSION: Subpalpebral lavage placement provides a practical and safe solution for the provision of frequent multimodal ocular medication when treating patients with a challenging temperament.


Asunto(s)
Enfermedades de los Perros , Irrigación Terapéutica , Perros , Animales , Estudios Retrospectivos , Resultado del Tratamiento , Irrigación Terapéutica/veterinaria , Administración Tópica , Percepción , Enfermedades de los Perros/tratamiento farmacológico
2.
Vet Ophthalmol ; 25(4): 291-296, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35512022

RESUMEN

OBJECTIVE: To compare the incidence of corneal injury during general anesthesia (GA) and the immediate post-operative period in eyes protected with topical ocular lubricant alone with eyes protected with topical lubricant followed by complete eyelid closure using tape. ANIMALS STUDIED: One hundred client-owned dogs (200 eyes) undergoing GA for MRI scan. METHODS: Patients had ocular lubricant applied to both eyes upon induction of anesthesia. One eye was taped closed immediately after induction for the duration of anesthesia using Strappal® tape (BSN medical™; treatment group), and the other eye was not taped (control group). Eyes were randomly allocated to a treatment group. Ophthalmic examination was performed before and after anesthesia; the examiner was masked to eye treatment groups. Corneal injury was defined as corneal ulceration or corneal erosion. A McNemar's test was used to compare the incidence of corneal injury between groups. A paired-samples t-test was used to compare Schirmer-1 tear test (STT-1) readings between groups. RESULTS: Sixteen eyes (8%) developed corneal erosion. No corneal ulceration occurred. There was no significant difference between incidence of corneal erosion between groups (p = .454). There was a significant decrease in STT-1 readings following GA in both groups (p < .001), with no significant difference in STT-1 between groups (p = .687). No adverse effects of taping the eye closed were observed. CONCLUSION: Taping the eyes closed during GA had no additional benefit to the lubrication protocol used in this study.


Asunto(s)
Lesiones de la Cornea , Úlcera de la Córnea , Enfermedades de los Perros , Anestesia General/efectos adversos , Anestesia General/veterinaria , Animales , Lesiones de la Cornea/etiología , Lesiones de la Cornea/veterinaria , Úlcera de la Córnea/etiología , Úlcera de la Córnea/veterinaria , Enfermedades de los Perros/diagnóstico , Perros , Incidencia , Lubricantes , Estudios Prospectivos , Lágrimas
3.
Antimicrob Agents Chemother ; 65(12): e0104421, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516249

RESUMEN

The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3ß,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/genética , Candida auris , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Oxidorreductasas , Esterol 14-Desmetilasa/genética
4.
Med Mycol ; 59(8): 763-772, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-33550403

RESUMEN

Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility.This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. LAY SUMMARY: A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/genética , Azoles/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Factor de Unión a CCAAT/genética , Membrana Celular/química , Membrana Celular/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Cromatografía de Gases y Espectrometría de Masas , Proteína HMGB1/genética , Autoantígeno Ku/antagonistas & inhibidores , Autoantígeno Ku/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroles/análisis , Transcriptoma , Voriconazol/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-30455247

RESUMEN

Candida glabrata is intrinsically less susceptible to azoles, and resistance to echinocandins and reduced susceptibility (RS) to amphotericin B (AMB) have also been detected. The molecular mechanisms of RS to AMB were investigated in C. glabrata strains in Kuwait by sequence analyses of genes involved in ergosterol biosynthesis. A total of 1,646 C. glabrata isolates were tested by Etest, and results for 12 selected isolates were confirmed by reference broth microdilution. PCR sequencing of three genes (ERG2, ERG6, and ERG11) was performed for all isolates with RS to AMB (RS-AMB isolates) and 5 selected wild-type C. glabrata isolates by using gene-specific primers. The total cell sterol content was analyzed by gas chromatography-mass spectrometry. The phylogenetic relationship among the isolates was investigated by multilocus sequence typing. Wild-type isolates contained only synonymous mutations in ERG2, ERG6, or ERG11, and the total sterol content was similar to that of the reference strains. A nonsynonymous ERG6 mutation (AGA48AAA, R48K) was found in both RS-AMB and wild-type isolates. Four RS-AMB isolates contained novel nonsense mutations at Trp286, Tyr192, and Leu341, and 2 isolates contained a nonsynonymous mutation in ERG6 (V126F or C198F); and the sterol content of these isolates was consistent with ERG6 deficiency. Two other RS-AMB isolates contained a novel nonsynonymous ERG2 mutation (G119S or G122S), and their sterol content was consistent with ERG2 deficiency. Of 8 RS-AMB isolates, 1 fluconazole-resistant isolate also contained nonsynonymous Y141H plus L381M mutations, while 7 isolates contained only synonymous mutations in ERG11 All isolates with ERG6, ERG2, and ERG11 mutations were genotypically distinct strains. Our data show that ERG6 and ERG2 are major targets conferring RS-AMB in clinical C. glabrata isolates.


Asunto(s)
Anfotericina B/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Metiltransferasas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Humanos , Metiltransferasas/genética , Mutación/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-30783005

RESUMEN

Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Esterol 14-Desmetilasa/metabolismo , Secuencia de Aminoácidos , Candida albicans/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacología , Mutación/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Esterol 14-Desmetilasa/genética , Triazoles/farmacología , Voriconazol/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-29439966

RESUMEN

The antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, against Aspergillus fumigatus were tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (n = 96) with a MIC range of 0.016 to 0.25 µg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 µg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 µg/ml), especially Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 µg/ml) which indicated that it was 8-fold more potent than voriconazole. In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 µg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showed in vivo effects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Triazoles/farmacología , Administración Intranasal , Animales , Aspergillus fumigatus/aislamiento & purificación , Candida/efectos de los fármacos , Cryptococcus/efectos de los fármacos , Citocinas/sangre , Farmacorresistencia Fúngica , Células Epiteliales/metabolismo , Ergosterol/biosíntesis , Proteínas Fúngicas/antagonistas & inhibidores , Galactosa/análogos & derivados , Humanos , Hifa/metabolismo , Mananos/sangre , Ratones , Pruebas de Sensibilidad Microbiana , Rhizopus/efectos de los fármacos , Trichophyton/efectos de los fármacos , Voriconazol/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-28483956

RESUMEN

Prior to characterization of antifungal inhibitors that target CYP51, Trichophyton rubrum CYP51 was expressed in Escherichia coli, purified, and characterized. T. rubrum CYP51 bound lanosterol, obtusifoliol, and eburicol with similar affinities (dissociation constant [Kd ] values, 22.7, 20.3, and 20.9 µM, respectively) but displayed substrate specificity, insofar as only eburicol was demethylated in CYP51 reconstitution assays (turnover number, 1.55 min-1; Km value, 2 µM). The investigational agent VT-1161 bound tightly to T. rubrum CYP51 (Kd = 242 nM) with an affinity similar to that of clotrimazole, fluconazole, ketoconazole, and voriconazole (Kd values, 179, 173, 312, and 304 nM, respectively) and with an affinity lower than that of itraconazole (Kd = 53 nM). Determinations of 50% inhibitory concentrations (IC50s) using 0.5 µM CYP51 showed that VT-1161 was a tight-binding inhibitor of T. rubrum CYP51 activity, yielding an IC50 of 0.14 µM, whereas itraconazole, fluconazole, and ketoconazole had IC50s of 0.26, 0.4, and 0.6 µM, respectively. When the activity of VT-1161 was tested against 34 clinical isolates, VT-1161 was a potent inhibitor of T. rubrum growth, with MIC50, MIC90, and geometric mean MIC values of ≤0.03, 0.06, and 0.033 µg ml-1, respectively. With its selectivity versus human CYP51 and drug-metabolizing cytochrome P450s having already been established, VT-1161 should prove to be safe and effective in combating T. rubrum infections in patients.


Asunto(s)
Antifúngicos/farmacología , Piridinas/farmacología , Tetrazoles/farmacología , Trichophyton/efectos de los fármacos , Azoles/farmacología , Candida albicans/efectos de los fármacos , Clotrimazol/farmacología , Farmacorresistencia Fúngica , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Itraconazol/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/metabolismo , Especificidad por Sustrato , Voriconazol/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-28223388

RESUMEN

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 µM and 0.22 µM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 µg/ml, while those of voriconazole ranged from 0.064 to 4 µg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 µg/ml, whereas voriconazole (0.019 to >1 µg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 µg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 µg/mouse, while posaconazole showed similar effects (44%) at 14 µg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Benzamidas/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/aislamiento & purificación , Células Cultivadas , Sistema Enzimático del Citocromo P-450 , Humanos , Itraconazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Voriconazol/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-28630186

RESUMEN

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Equinocandinas/farmacología , Oxidorreductasas/genética , Azoles/metabolismo , Candida parapsilosis/aislamiento & purificación , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Fúngica Múltiple/genética , Equinocandinas/metabolismo , Ergosterol/biosíntesis , Ergosterol/genética , Fungemia/tratamiento farmacológico , Fungemia/microbiología , Fungemia/prevención & control , Dosificación de Gen/genética , Genoma Fúngico/genética , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética
11.
Antimicrob Agents Chemother ; 60(8): 4530-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27161631

RESUMEN

Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 µM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 µM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 µM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus/efectos de los fármacos , Piridinas/efectos adversos , Piridinas/farmacología , Esterol 14-Desmetilasa/metabolismo , Tetrazoles/efectos adversos , Tetrazoles/farmacología , Antifúngicos/efectos adversos , Clotrimazol/efectos adversos , Clotrimazol/farmacología , Cryptococcus/metabolismo , Activación Enzimática/efectos de los fármacos , Ergosterol/metabolismo , Fluconazol/efectos adversos , Fluconazol/farmacología , Humanos , Itraconazol/efectos adversos , Itraconazol/farmacología , Cetoconazol/efectos adversos , Cetoconazol/farmacología , Lanosterol/análogos & derivados , Lanosterol/metabolismo , Voriconazol/efectos adversos , Voriconazol/farmacología
12.
Antimicrob Agents Chemother ; 59(10): 5942-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169412

RESUMEN

While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Candida/genética , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica , Esteroles/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/metabolismo , Candidiasis/microbiología , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Esteroles/agonistas , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética
13.
Antimicrob Agents Chemother ; 59(12): 7771-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26459890

RESUMEN

The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 µM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 µM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 µM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 µM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/metabolismo , Aspergillus fumigatus/genética , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Mutación Puntual , Proteínas Recombinantes/química
14.
Antimicrob Agents Chemother ; 59(8): 4707-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26014948

RESUMEN

In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 µM), whereas inhibition by fluconazole was weak (IC50, 30 µM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Acanthamoeba castellanii/efectos de los fármacos , Amebiasis/tratamiento farmacológico , Amebicidas/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Esterol 14-Desmetilasa/metabolismo , Acanthamoeba castellanii/metabolismo , Amebiasis/microbiología , Proliferación Celular/efectos de los fármacos , Fluconazol/farmacología , Humanos , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Triazoles/farmacología , Voriconazol/metabolismo
15.
Fungal Genet Biol ; 82: 69-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26074495

RESUMEN

Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Ascomicetos/patogenicidad , Ácidos Grasos/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genoma Fúngico , Éteres Metílicos/metabolismo , Sistemas de Lectura Abierta , Fenotipo , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ARN , Esporas Fúngicas , Esteroles/metabolismo , Triticum/microbiología , Virulencia/genética
16.
Appl Environ Microbiol ; 81(10): 3379-86, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25746994

RESUMEN

Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide.


Asunto(s)
Ascomicetos/enzimología , Proteínas Fúngicas/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Esterol 14-Desmetilasa/química , Secuencia de Aminoácidos , Ascomicetos/química , Ascomicetos/genética , Candida albicans/enzimología , Candida albicans/genética , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/metabolismo , Datos de Secuencia Molecular , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/genética , Oxidación-Reducción , Alineación de Secuencia , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Especificidad por Sustrato , Temperatura
17.
Appl Environ Microbiol ; 80(19): 6154-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085484

RESUMEN

A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 µM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 µM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 µg ml(-1)). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 µg ml(-1)) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 µg ml(-1)). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 µM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 µg ml(-1)) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antifúngicos/farmacología , Clotrimazol/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Saprolegnia/efectos de los fármacos , Animales , Antifúngicos/química , Azoles/química , Azoles/farmacología , Vías Biosintéticas , Clotrimazol/química , Enfermedades de los Peces/microbiología , Peces , Pruebas de Sensibilidad Microbiana/veterinaria , Filogenia , Saprolegnia/enzimología , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Esteroles/análisis
18.
mBio ; 15(8): e0166124, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38980037

RESUMEN

Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE: The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.


Asunto(s)
Antifúngicos , Vías Biosintéticas , Farmacorresistencia Fúngica , Ergosterol , Mucor , Ergosterol/biosíntesis , Ergosterol/metabolismo , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Vías Biosintéticas/genética , Humanos , Mucor/genética , Mucor/efectos de los fármacos , Mucor/metabolismo , Mucormicosis/microbiología , Mucormicosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Triazoles/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Nitrilos/farmacología , Piridinas/farmacología , Oxidorreductasas
19.
PLoS One ; 19(8): e0308665, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121069

RESUMEN

Development of resistance and tolerance to antifungal drugs in Candida albicans can compromise treatment of infections caused by this pathogenic yeast species. The uniquely expanded C. albicans TLO gene family is comprised of 14 paralogous genes which encode Med2, a subunit of the multiprotein Mediator complex which is involved in the global control of transcription. This study investigates the acquisition of fluconazole tolerance in a mutant in which the entire TLO gene family has been deleted. This phenotype was reversed to varying degrees upon reintroduction of representative members of the alpha- and beta-TLO clades (i.e. TLO1 and TLO2), but not by TLO11, a gamma-clade representative. Comparative RNA sequencing analysis revealed changes in the expression of genes involved in a range of cellular functions, including ergosterol biosynthesis, mitochondrial function, and redox homeostasis. This was supported by the results of mass spectrometry analysis, which revealed alterations in sterol composition of the mutant cell membrane. Our data suggest that members of the C. albicans TLO gene family are involved in the control of ergosterol biosynthesis and mitochondrial function and may play a role in the responses of C. albicans to azole antifungal agents.


Asunto(s)
Antifúngicos , Candida albicans , Farmacorresistencia Fúngica , Fluconazol , Proteínas Fúngicas , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Fluconazol/farmacología , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistencia Fúngica/genética , Esteroles/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Ergosterol/biosíntesis , Ergosterol/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Familia de Multigenes , Pruebas de Sensibilidad Microbiana , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética
20.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769341

RESUMEN

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferasas , Triazoles , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Antifúngicos/farmacología , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ratones , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Ergosterol/metabolismo , Ergosterol/biosíntesis , Triazoles/farmacología , Regulación Fúngica de la Expresión Génica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Femenino , Pruebas de Sensibilidad Microbiana , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA