Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 327(1): E42-E54, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717363

RESUMEN

Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal. It is not known whether this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 yr). Metabolic health and vascular responses to a mixed-meal challenge (MMC) were measured at pre (day 0)-, mid (day 4)- and post (day 8)-intervention. There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and postintervention. Compared with preintervention there was a significant increase in insulin (but not glucose) total area under the curve in response to the MMC at midintervention (P = 0.041) and at postintervention (P = 0.028). Unlike at pre- and midintervention, at postintervention muscle MBF decreased at 60 min (P = 0.024) and 120 min (P = 0.023) after the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 min (P < 0.001) and 120 min (P < 0.001) after the MMC at pre-, mid- and postintervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.NEW & NOTEWORTHY This is the first study to investigate skeletal muscle microvascular blood flow (MBF) responses in humans after short-term high-calorie high-fat (HCHF) diet. The main findings were that HCHF diet causes elevated postprandial insulin in healthy individuals within 3 days and blunts meal-induced muscle MBF within 7 days, despite no impairments in postprandial glucose or macrovascular blood flow.


Asunto(s)
Glucemia , Dieta Alta en Grasa , Hiperinsulinismo , Insulina , Músculo Esquelético , Periodo Posprandial , Humanos , Adulto , Masculino , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Adulto Joven , Femenino , Adolescente , Periodo Posprandial/fisiología , Insulina/sangre , Glucemia/metabolismo , Flujo Sanguíneo Regional , Microcirculación/fisiología , Resistencia a la Insulina/fisiología , Voluntarios Sanos , Microvasos , Ayuno
2.
Eur J Nutr ; 63(4): 1315-1327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409436

RESUMEN

PURPOSE: Evidence is growing that high salt intake is an independent risk factor for obesity, but the mechanisms are unknown. Our novel working hypothesis is that high salt intake drives cortisol production, which in turn, drives obesity. The current study aimed to demonstrate an acute cortisol response following a single high salt meal. METHODS: Eight participants (age 30.5 ± 9.8 years [mean ± SD], 50% female), consumed high salt (3.82 g; 1529 mg sodium) and low salt (0.02 g; 9 mg sodium) meals in a randomized cross-over design. RESULTS: Urinary and salivary cortisol and plasma adrenocorticotropic hormone (ACTH) demonstrated order effects. When high salt was given second, there was a peak above baseline for urinary cortisol (26.3%), salivary cortisol (9.4%) and plasma ACTH (4.1%) followed by a significant decline in each hormone (treatment*time, F[9, 18] = 2.641, p = 0.038, partial η2 = 0.569; treatment*time, F[12, 24] = 2.668, p = 0.020, partial η2 = 0.572; treatment*time, F[12, 24] = 2.580, p = 0.023, partial η2 = 0.563, respectively), but not when high salt was given first (p > 0.05 for all). CONCLUSION: These intriguing findings provide partial support for our hypothesis and support a need for further research to elucidate the role of high salt intake in cortisol production and, in turn, in the aetiology of obesity. TRIAL REGISTRATION NUMBER: ACTRN12623000490673; date of registration 12/05/2023; retrospectively registered.


Asunto(s)
Estudios Cruzados , Hidrocortisona , Obesidad , Cloruro de Sodio Dietético , Humanos , Hidrocortisona/sangre , Femenino , Proyectos Piloto , Adulto , Obesidad/metabolismo , Cloruro de Sodio Dietético/administración & dosificación , Masculino , Adulto Joven , Saliva/metabolismo , Hormona Adrenocorticotrópica/sangre
3.
BMC Biol ; 20(1): 164, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850762

RESUMEN

BACKGROUND: Mitochondria have an essential role in regulating metabolism and integrate environmental and physiological signals to affect processes such as cellular bioenergetics and response to stress. In the metabolically active skeletal muscle, mitochondrial biogenesis is one important component contributing to a broad set of mitochondrial adaptations occurring in response to signals, which converge on the biogenesis transcriptional regulator peroxisome proliferator-activated receptor coactivator 1-alpha (PGC-1α), and is central to the beneficial effects of exercise in skeletal muscle. We investigated the role of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1), which interacts with PGC-1α in regulating transcriptional responses to exercise in skeletal muscle. RESULTS: In human skeletal muscle, TUG1 gene expression was upregulated post-exercise and was also positively correlated with the increase in PGC-1α gene expression (PPARGC1A). Tug1 knockdown (KD) in differentiating mouse myotubes led to decreased Ppargc1a gene expression, impaired mitochondrial respiration and morphology, and enhanced myosin heavy chain slow isoform protein expression. In response to a Ca2+-mediated stimulus, Tug1 KD prevented an increase in Ppargc1a expression. RNA sequencing revealed that Tug1 KD impacted mitochondrial Ca2+ transport genes and several downstream PGC-1α targets. Finally, Tug1 KD modulated the expression of ~300 genes that were upregulated in response to an in vitro model of exercise in myotubes, including genes involved in regulating myogenesis. CONCLUSIONS: We found that TUG1 is upregulated in human skeletal muscle after a single session of exercise, and mechanistically, Tug1 regulates transcriptional networks associated with mitochondrial calcium handling, muscle differentiation and myogenesis. These data demonstrate that lncRNA Tug1 exerts regulation over fundamental aspects of skeletal muscle biology and response to exercise stimuli.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Metabolismo Energético , Humanos , Ratones , Mitocondrias/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Largo no Codificante/metabolismo
4.
Diabetologia ; 65(1): 216-225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34590175

RESUMEN

AIMS/HYPOTHESIS: Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown. We aimed to determine whether apparently healthy people at risk of type 2 diabetes display impaired skeletal muscle microvascular responses to a mixed-nutrient meal. METHODS: In this cross-sectional study, participants with no family history of type 2 diabetes (FH-) for two generations (n = 18), participants with a positive family history of type 2 diabetes (FH+; i.e. a parent with type 2 diabetes; n = 16) and those with type 2 diabetes (n = 12) underwent a mixed meal challenge (MMC). Metabolic responses (blood glucose, plasma insulin and indirect calorimetry) were measured before and during the MMC. Skeletal muscle large artery haemodynamics (2D and Doppler ultrasound, and Mobil-O-graph) and microvascular responses (contrast-enhanced ultrasound) were measured at baseline and 1 h post MMC. RESULTS: Despite normal blood glucose concentrations, FH+ individuals displayed impaired metabolic flexibility (reduced ability to switch from fat to carbohydrate oxidation vs FH-; p < 0.05) during the MMC. The MMC increased forearm muscle microvascular blood volume in both the FH- (1.3-fold, p < 0.01) and FH+ (1.3-fold, p < 0.05) groups but not in participants with type 2 diabetes. However, the MMC increased MBF (1.9-fold, p < 0.01), brachial artery diameter (1.1-fold, p < 0.01) and brachial artery blood flow (1.7-fold, p < 0.001) and reduced vascular resistance (0.7-fold, p < 0.001) only in FH- participants, with these changes being absent in FH+ and type 2 diabetes. Participants with type 2 diabetes displayed significantly higher vascular stiffness (p < 0.001) compared with those in the FH- and FH+ groups; however, vascular stiffness did not change during the MMC in any participant group. CONCLUSIONS/INTERPRETATION: Normoglycaemic FH+ participants display impaired postprandial skeletal muscle macro- and microvascular responses, suggesting that poor vascular responses to a meal may contribute to their increased risk of type 2 diabetes. We conclude that vascular insulin resistance may be an early precursor to type 2 diabetes in humans, which can be revealed using an MMC.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Glucemia/metabolismo , Estudios Transversales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Padres , Periodo Posprandial
5.
J Physiol ; 600(7): 1667-1681, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045191

RESUMEN

Insulin infusion increases skeletal muscle microvascular blood flow (MBF) in healthy people but is impaired during insulin resistance. However, we have shown that eliciting insulin secretion via oral glucose loading in healthy people impairs muscle MBF, whilst others have demonstrated intravenous glucose infusion stimulates MBF. We aimed to show that the route of glucose administration (oral versus intravenous) influences muscle MBF, and explore potential gut-derived hormones that may explain these divergent responses. Ten healthy individuals underwent a 120 min oral glucose tolerance test (OGTT; 75 g glucose) and on a subsequent occasion an intravenous glucose tolerance test (IVGTT, bypassing the gut) matched for similar blood glucose excursions. Femoral artery and thigh muscle microvascular (contrast-enhanced ultrasound) haemodynamics were measured at baseline and during the OGTT/IVGTT. Plasma insulin, C-peptide, glucagon, non-esterified fatty acids and a range of gut-derived hormones and incretins (gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1(GLP-1)) were measured at baseline and throughout the OGTT/IVGTT. The IVGTT increased whereas the OGTT impaired MBF (1.3-fold versus 0.5-fold from baseline, respectively, P = 0.0006). The impairment in MBF during the OGTT occurred despite producing 2.8-fold higher plasma insulin concentrations (P = 0.0001). The change in MBF from baseline (ΔMBF) negatively correlated with ΔGIP concentrations (r = -0.665, P < 0.0001). The natural log ratio of incretins GLP-1:GIP was positively associated with ΔMBF (r = 0.658, P < 0.0001), suggesting they have opposing actions on the microvasculature. Postprandial hyperglycaemia per se does not acutely determine opposing microvascular responses between OGTT and IVGTT. Incretins may play a role in modulating skeletal muscle MBF in humans. KEY POINTS: Insulin or mixed nutrient meals stimulate skeletal muscle microvascular blood flow (MBF) to aid in the delivery of nutrients; however, this vascular effect is lost during insulin resistance. Food/drinks containing large glucose loads impair MBF in healthy people; however, this impairment is not observed when glucose is infused intravenously (bypassing the gut). We investigated skeletal muscle MBF responses to a 75 g oral glucose tolerance test and intravenous glucose infusion and aimed to identify potential gut hormones responsible for glucose-mediated changes in MBF. Despite similar blood glucose concentrations, orally ingested glucose impaired, whereas intravenously infused glucose augmented, skeletal muscle MBF. The incretin gastric inhibitory polypeptide was negatively associated with MBF, suggestive of an incretin-mediated MBF response to oral glucose ingestion. This work provides new insight into why diets high in glucose may be detrimental to vascular health and provides new avenues for novel treatment strategies targeting microvascular dysfunction.


Asunto(s)
Glucosa , Incretinas , Glucemia , Polipéptido Inhibidor Gástrico/farmacología , Glucosa/farmacología , Humanos , Incretinas/farmacología , Insulina , Microcirculación , Músculo Esquelético
6.
Am J Physiol Endocrinol Metab ; 323(3): E319-E332, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767699

RESUMEN

Osteoglycin (OGN) and lipocalin-2 (LCN2) are hormones that can be secreted by bone and have been linked to glucose homeostasis in rodents. However, the endocrine role of these hormones in humans is contradictory and unclear. We examined the effects of exercise and meal ingestion on circulating serum OGN and LCN2 levels in eight healthy males {age: 28 [25, 30] years [median ± interquartile range (IQR)] and body mass index [BMI]: 24.3 [23.6, 25.5] kg/m2}. In a randomized crossover design, participants ingested a high-glucose (1.1 g glucose/kg body wt) mixed-nutrient meal (45% carbohydrate, 20% protein, and 35% fat) on a rest-control day and 3 and 24 h after aerobic cycling exercise (1 h at 70%-75% V̇o2peak). Acute aerobic exercise increased serum LCN2 levels immediately after exercise (∼61%), which remained elevated 3-h postexercise (∼55%). In contrast, serum OGN remained similar to baseline levels throughout the 3-h postexercise recovery period. The ingestion of a high-glucose mixed-nutrient meal led to a decrease in serum OGN at 90-min (approximately -17%) and 120-min postprandial (approximately -44%), and a decrease in LCN2 at 120-min postprandial (approximately -26%). Compared with the control meal, prior exercise elevated serum OGN and LCN2 levels at 120-min postprandial when the meal was ingested 3-h (OGN: ∼74% and LCN2: ∼68%) and 24-h postexercise (OGN: ∼56% and LCN2: ∼16%). Acute exercise increases serum LCN2 and attenuates the postprandial decrease in OGN and LCN2 following high-glucose mixed-nutrient meal ingestion. The potential endocrine role of circulating OGN and LCN2 in humans warrants further investigation.NEW & NOTEWORTHY We provide novel evidence that OGN and LCN2 decrease 120 min after ingesting a high-glucose mixed-nutrient meal in healthy adults. Acute aerobic exercise increases circulating LCN2 for up to 3-h postexercise, whereas circulating OGN remains similar to baseline. Despite differing postexercise responses, postprandial LCN2 and OGN are elevated when the high-glucose meal is ingested 3-h and 24-h postexercise. Findings support that OGN and LCN2 are dynamically linked to energy homeostasis in humans.


Asunto(s)
Ejercicio Físico , Periodo Posprandial , Adulto , Glucemia/metabolismo , Ingestión de Alimentos , Ejercicio Físico/fisiología , Glucosa , Hormonas , Humanos , Insulina/metabolismo , Lipocalina 2 , Masculino , Nutrientes , Periodo Posprandial/fisiología
7.
Am J Physiol Endocrinol Metab ; 323(5): E418-E427, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723226

RESUMEN

Adipose tissue microvascular blood flow (MBF) is stimulated postprandially to augment delivery of nutrients and hormones to adipocytes. Adipose tissue MBF is impaired in type 2 diabetes (T2D). Whether healthy individuals at-risk of T2D show similar impairments is unknown. We aimed to determine whether adipose tissue MBF is impaired in apparently healthy individuals with a family history of T2D. Overnight-fasted individuals with no family history of T2D for two generations (FH-, n = 13), with at least one parent with T2D (FH+, n = 14) and clinically diagnosed T2D (n = 11) underwent a mixed meal challenge (MMC). Metabolic responses [blood glucose, plasma insulin, plasma nonesterified fatty acids (NEFAs), and fat oxidation] were measured before and during the MMC. MBF in truncal subcutaneous adipose tissue was assessed by contrast ultrasound while fasting and 60 min post-MMC. FH+ had normal blood glucoses, increased adiposity, and impaired post-MMC adipose tissue MBF (Δ0.70 ± 0.22 vs. 2.45 ± 0.60 acoustic intensity/s, P = 0.007) and post-MMC adipose tissue insulin resistance (Adipo-IR index; Δ45.5 ± 13.9 vs. 7.8 ± 5.1 mmol/L × pmol/L, P = 0.007) compared with FH-. FH+ and T2D had an impaired ability to suppress fat oxidation post-MMC. Fat oxidation incremental area under the curve (iAUC) (35-55 min post-MMC, iAUC) was higher in FH+ and T2D than in FH- (P = 0.005 and 0.009, respectively). Postprandial MBF was negatively associated with postprandial fat oxidation iAUC (P = 0.01). We conclude that apparently healthy FH+ individuals display blunted postprandial adipose tissue MBF that occurs in parallel with adipose tissue insulin resistance and impaired suppression of fat oxidation, which may help explain their heightened risk for developing T2D.NEW & NOTEWORTHY Adipose tissue blood flow plays a key role in postprandial nutrient storage. People at-risk of type 2 diabetes have impaired postmeal adipose tissue blood flow. Impaired adipose tissue blood flow is associated with altered fat oxidation. Risk of type 2 diabetes may be elevated by poor adipose tissue blood flow.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Adulto , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Resistencia a la Insulina/fisiología , Microcirculación , Ácidos Grasos no Esterificados/metabolismo , Periodo Posprandial/fisiología , Tejido Adiposo/metabolismo , Nutrientes , Hormonas/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
8.
FASEB J ; 35(5): e21499, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811697

RESUMEN

The microvasculature is important for both health and exercise tolerance in a range of populations. However, methodological limitations have meant changes in microvascular blood flow are rarely assessed in humans during interventions designed to affect skeletal muscle blood flow such as the wearing of compression garments. The aim of this study is, for the first time, to use contrast-enhanced ultrasound to directly measure the effects of compression on muscle microvascular blood flow alongside measures of femoral artery blood flow and muscle oxygenation following intense exercise in healthy adults. It was hypothesized that both muscle microvascular and femoral artery blood flows would be augmented with compression garments as compared with a control condition. Ten recreationally active participants completed two repeated-sprint exercise sessions, with and without lower-limb compression tights. Muscle microvascular blood flow, femoral arterial blood flow (2D and Doppler ultrasound), muscle oxygenation (near-infrared spectroscopy), cycling performance, and venous blood samples were measured/taken throughout exercise and the 1-hour post-exercise recovery period. Compared with control, compression reduced muscle microvascular blood volume and attenuated the exercise-induced increase in microvascular velocity and flow immediately after exercise and 1 hour post-exercise. Compression increased femoral artery diameter and augmented the exercise-induced increase in femoral arterial blood flow during exercise. Markers of blood oxygen extraction in muscle were increased with compression during and after exercise. Compression had no effect on blood lactate, glucose, or exercise performance. We provide new evidence that lower-limb compression attenuates the exercise-induced increase in skeletal muscle microvascular blood flow following exercise, despite a divergent increase in femoral artery blood flow. Decreased muscle microvascular perfusion is offset by increased muscle oxygen extraction, a potential mechanism allowing for the maintenance of exercise performance.


Asunto(s)
Ejercicio Físico , Hemodinámica , Microcirculación , Músculo Esquelético/fisiología , Consumo de Oxígeno , Oxígeno/metabolismo , Flujo Sanguíneo Regional , Adulto , Estudios de Casos y Controles , Tolerancia al Ejercicio , Femenino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Perfusión , Ultrasonografía
9.
Diabetes Obes Metab ; 24(6): 1047-1060, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35165982

RESUMEN

AIM: To investigate the effects of mitochondrial-targeted antioxidants (mitoAOXs) on glycaemic control, cardiovascular health, and oxidative stress outcomes in humans. MATERIALS AND METHODS: Randomized controlled trials investigating mitoAOX interventions in humans were searched for in databases (MEDLINE-PubMed, Scopus, EMBASE and Cochrane Library) and clinical trial registries up to 10 June 2021. The Cochrane Collaboration's tool for assessing risk of bias and Grading of Recommendations, Assessment, Development and Evaluations were used to assess trial quality and evidence certainty, respectively. RESULTS: Nineteen studies (n = 884 participants) using mitoAOXs (including Elamipretide, MitoQ and MitoTEMPO) were included in the systematic review. There were limited studies investigating the effects of mitoAOXs on glycaemic control; and outcomes and population groups in studies focusing on cardiovascular health were diverse. MitoAOXs significantly improved brachial flow-mediated dilation (n = 3 trials; standardized mean difference: 1.19, 95% CI: 0.28, 2.16; I2 : 67%) with very low evidence certainty. No significant effects were found for any other glycaemic, cardiovascular or oxidative stress-related outcomes with mitoAOXs in quantitative analyses, with evidence certainty rated mostly as low. There was a lack of serious treatment-emergent adverse events with mitoAOXs, although subcutaneous injection of Elamipretide increased mild-moderate injection site-related events. CONCLUSION: While short-term studies indicate that mitoAOXs are generally well tolerated, there is currently limited evidence to support the use of mitoAOXs in the management of glycaemic control and cardiovascular health. Review findings suggest that future research should focus on the effects of mitoAOXs on glycaemic control and endothelial function in target clinical population groups.


Asunto(s)
Antioxidantes , Control Glucémico , Antioxidantes/uso terapéutico , Glucemia , Humanos , Estrés Oxidativo , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Scand J Med Sci Sports ; 32(7): 1076-1088, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35274374

RESUMEN

BACKGROUND: There is a universal need to increase the number of adults meeting physical activity (PA) recommendations to help improve health. In recent years, electrically assisted bicycles (e-bikes) have emerged as a promising method for supporting people to initiate and maintain physical activity levels. To the best of our knowledge, there have been no meta-analyses conducted to quantify the difference in physiological responses between e-cycling with electrical assistance, e-cycling without assistance, conventional cycling, and walking. METHODS: A systematic review and meta-analysis was conducted following PRISMA guidelines. We identified short-term e-bike studies, which utilized a crossover design comparing physiological outcomes when e-cycling with electrical assistance, e-cycling without electrical assistance, conventional cycling, or walking. Energy expenditure (EE), heart rate (HR), oxygen consumption (VO2 ), power output (PO), and metabolic equivalents (METs) outcomes were included within the meta-analysis. RESULTS: Fourteen studies met our inclusion criteria (N = 239). E-cycling with electrical assistance resulted in a lower energy expenditure (EE) [SMD = -0.46 (-0.98, 0.06), p = 0.08], heart rate (HR) [MD = -11.41 (-17.15, -5.68), p < 0.000, beats per minute], oxygen uptake (VO2 ) [SMD = -0.57 (-0.96, -0.17), p = 0.005], power output (PO) [MD = -31.19 (-47.19 to -15.18), p = 0.000, Watts], and metabolic equivalent (MET) response [MD = -0.83 (-1.52, -0.14), p = 0.02, METs], compared with conventional cycling. E-cycling with moderate electrical assistance resulted in a greater HR response [MD 10.38 (-1.48, 22.23) p = 0.09, beats per minute], and VO2 response [SMD 0.34 (-0.14, 0.82) p = 0.16] compared with walking. CONCLUSIONS: E-cycling was associated with increased physiological responses that can confer health benefits.


Asunto(s)
Ciclismo , Consumo de Oxígeno , Adulto , Ciclismo/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Consumo de Oxígeno/fisiología
11.
J Physiol ; 599(1): 83-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191527

RESUMEN

KEY POINTS: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion increases muscle microvascular blood flow which in part facilitates glucose delivery and disposal. In contrast, high-glucose ingestion impairs muscle microvascular blood flow which may contribute to impaired postprandial metabolism. We investigated the effects of prior cycling exercise on postprandial muscle microvascular blood flow responses to a high-glucose mixed-nutrient meal ingested 3 and 24 h post-exercise. Prior exercise enhanced muscle microvascular blood flow and mitigated microvascular impairments induced by a high-glucose mixed meal ingested 3 h post-exercise, and to a lesser extent 24 h post-exercise. High-glucose ingestion 3 h post-exercise leads to greater postprandial blood glucose, non-esterified fatty acids, and fat oxidation, and a delay in the insulin response to the meal compared to control. Effects of acute exercise on muscle microvascular blood flow persist well after the cessation of exercise which may be beneficial for conditions characterized by microvascular and glycaemic dysfunction. ABSTRACT: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion lead to increased muscle microvascular blood flow (MBF), whereas high-glucose ingestion impairs MBF. We investigated whether prior cycling exercise could enhance postprandial muscle MBF and prevent MBF impairments induced by high-glucose mixed-nutrient meal ingestion. In a randomized cross-over design, eight healthy young men ingested a high-glucose mixed-nutrient meal (1.1 g glucose/kg body weight; 45% carbohydrate, 20% protein and 35% fat) after an overnight fast (no-exercise control) and 3 h and 24 h after moderate-intensity cycling exercise (1 h at 70-75% V̇O2peak ). Skeletal muscle MBF, measured directly by contrast-enhanced ultrasound, was lower at 60 min and 120 min postprandially compared to baseline in all conditions (P < 0.05), with a greater decrease occurring from 60 min to 120 min in the control (no-exercise) condition only (P < 0.001). Despite this meal-induced decrease, MBF was still markedly higher compared to control in the 3 h post-exercise condition at 0 min (pre-meal; 74%, P = 0.004), 60 min (112%, P = 0.002) and 120 min (223%, P < 0.001), and in the 24 h post-exercise condition at 120 min postprandially (132%, P < 0.001). We also report that in the 3 h post-exercise condition postprandial blood glucose, non-esterified fatty acids (NEFAs), and fat oxidation were substantially elevated, and the insulin response to the meal delayed compared to control. This probably reflects a combination of increased post-exercise exogenous glucose appearance, substrate competition, and NEFA-induced insulin resistance. We conclude that prior cycling exercise elicits long-lasting effects on muscle MBF and partially mitigates MBF impairments induced by high-glucose mixed-nutrient meal ingestion.


Asunto(s)
Glucemia , Microcirculación , Músculo Esquelético , Glucemia/metabolismo , Glucosa , Humanos , Insulina/metabolismo , Masculino , Periodo Posprandial
12.
Am J Physiol Endocrinol Metab ; 318(6): E1014-E1021, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32286881

RESUMEN

Oral glucose ingestion leads to impaired muscle microvascular blood flow (MBF), which may contribute to acute hyperglycemia-induced insulin resistance. We investigated whether incorporating lipids and protein into a high-glucose load would prevent postprandial MBF dysfunction. Ten healthy young men (age, 27 yr [24, 30], mean with lower and upper bounds of the 95% confidence interval; height, 180 cm [174, 185]; weight, 77 kg [70, 84]) ingested a high-glucose (1.1 g/kg glucose) mixed-nutrient meal (10 kcal/kg; 45% carbohydrate, 20% protein, and 35% fat) in the morning after an overnight fast. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh MBF was measured via contrast-enhanced ultrasound, before meal ingestion and 1 h and 2 h postprandially. Blood glucose and plasma insulin were measured at baseline and every 15 min throughout the 2-h postprandial period. Compared with baseline, thigh muscle microvascular blood volume, velocity, and flow were significantly impaired at 60 min postprandial (-25%, -27%, and -46%, respectively; all P < 0.05) and to a greater extent at 120 min postprandial (-37%, -46%, and -64%; all P < 0.01). Heart rate and femoral arterial diameter, blood velocity, and blood flow were significantly increased at 60 min and 120 min postprandial (all P < 0.05). Higher blood glucose area under the curve was correlated with greater MBF dysfunction (R2 = 0.742; P < 0.001). Ingestion of a high-glucose mixed-nutrient meal impairs MBF in healthy individuals for up to 2 h postprandial.


Asunto(s)
Glucemia/metabolismo , Arteria Femoral/fisiopatología , Glucosa/administración & dosificación , Hiperglucemia/fisiopatología , Insulina/metabolismo , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Arteria Femoral/diagnóstico por imagen , Voluntarios Sanos , Frecuencia Cardíaca/fisiología , Humanos , Hiperglucemia/diagnóstico por imagen , Masculino , Comidas , Músculo Esquelético/diagnóstico por imagen , Periodo Posprandial , Muslo , Ultrasonografía , Adulto Joven
13.
Clin Exp Pharmacol Physiol ; 47(4): 725-737, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31868941

RESUMEN

Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.


Asunto(s)
Técnica de Clampeo de la Glucosa , Hiperinsulinismo/fisiopatología , Microcirculación , Músculo Esquelético/fisiopatología , Periodo Posprandial , Animales , Humanos , Hiperinsulinismo/sangre
14.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R1003-R1016, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30183338

RESUMEN

It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇o2peak: 48 ± 11 ml·kg-1·min-1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry ( Jo2) and H2O2 emission ( Jh2o2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but Jh2o2 decreased ( P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE ( P < 0.05). At 3 h postexercise, regardless of protocol, Jo2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration ( P < 0.05) but Jh2o2 trended higher ( P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations.


Asunto(s)
Ejercicio Físico/fisiología , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Adaptación Fisiológica/fisiología , Adulto , Terapia por Ejercicio/métodos , Femenino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
15.
Calcif Tissue Int ; 103(2): 198-205, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29427234

RESUMEN

Uncarboxylated osteocalcin (ucOC) stimulates muscle glucose uptake in mice EDL and soleus muscles. However, whether ucOC also exerts a similar effect in insulin-stimulated muscles in a muscle type-specific manner is currently unclear. We aimed to test the hypothesis that, with insulin stimulation, ucOC per se has a greater effect on oxidative muscle compared with glycolytic muscle, and to explore the underlying mechanisms. Mouse (C57BL6, male 9-12 weeks) extensor digitorum longus (EDL) and soleus muscles were isolated and longitudinally split into halves. Muscle samples were treated with varying doses of recombinant ucOC (0, 0.3, 1, 3, 30 ng/ml), followed by insulin addition. Muscle glucose uptake, protein phosphorylation and total expression of protein kinase B (Akt), Akt substrate of 160 kDa (AS160), extracellular signal-regulated kinase isoform 2 (ERK2), and adenosine monophosphate-activated protein kinase subunit α (AMPKα) were assessed. ucOC treatment at 30 ng/ml enhanced muscle glucose uptake in insulin-stimulated soleus, a mainly oxidative muscle (17.5%, p < 0.05), but not in EDL-a mostly glycolytic muscle. In insulin-stimulated soleus only, ucOC treatment (3 and 30 ng/ml) increased phosphorylation of AS160 and ERK2, but not Akt or AMPKα. The ucOC-induced increase in ERK2 phosphorylation in soleus was not associated with the increase in glucose uptake or AS160 phosphorylation. ucOC enhances glucose uptake and AS160 phosphorylation in insulin-stimulated oxidative but not glycolytic muscle, via upstream mechanisms which appear to be independent of ERK or AMPK.


Asunto(s)
Glucosa/farmacocinética , Músculo Esquelético/metabolismo , Osteocalcina/química , Animales , Transporte Biológico , Desoxiglucosa/metabolismo , Glucólisis , Hipoglucemiantes/farmacología , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Oxígeno/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
16.
Eur J Appl Physiol ; 117(7): 1463-1472, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28493029

RESUMEN

PURPOSE: The aim of the study was to determine whether higher fibrosis markers in skeletal muscle of older adults are accompanied by increased expression of components of the canonical TGF-ß signal transduction pathway. METHODS: Fourteen healthy young (21-35 years; 9 males and 5 females) and seventeen older (55-75 years; 9 males and 8 females) participants underwent vastus lateralis biopsies to determine intramuscular mRNA and protein expression of fibrogenic markers and TGF-ß signaling molecules related to TGF-ß1 and myostatin. RESULTS: Expression of mRNA encoding the pro-fibrotic factors; axin 2, collagen III, ß-catenin and fibronectin, were all significantly higher (all p < 0.05) in the older participants (350, 170, 298, and 641%, respectively). Furthermore, axin 2 and ß-catenin mRNA were significantly higher in older females than older males (p < 0.05). Gene expression of ActRIIB, myostatin, and TGF-ß1 were higher in older adults compared to younger adults (all p < 0.05). There was, however, no difference in the total protein content of myostatin, myoD or myogenin (all p > 0.05), whereas Smad3 protein phosphorylation was 48% lower (p < 0.05) in muscle from older adults. CONCLUSIONS: Increased abundance of mRNA of fibrotic markers was observed in muscle from older adults and was partly accompanied by altered abundance of pro-fibrotic ligands in a sex specific manner.


Asunto(s)
Envejecimiento/metabolismo , Colágeno Tipo III/metabolismo , Fibronectinas/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Adulto , Anciano , Proteína Axina/genética , Proteína Axina/metabolismo , Colágeno Tipo III/genética , Femenino , Fibronectinas/genética , Fibrosis , Humanos , Masculino , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Miostatina/genética , Miostatina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
Free Radic Biol Med ; 194: 255-283, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526243

RESUMEN

Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.


Asunto(s)
Diabetes Gestacional , Pie Diabético , Embarazo , Femenino , Humanos , Vitaminas , Suplementos Dietéticos , Ácido Ascórbico/uso terapéutico
19.
Front Immunol ; 14: 1127088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063903

RESUMEN

Background: Biomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma. Methods: In a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers. Results: Oxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses. Conclusion: Findings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.


Asunto(s)
Antioxidantes , Nitratos , Masculino , Humanos , Adulto Joven , Adulto , Catalasa , Sustancias Reactivas al Ácido Tiobarbitúrico , Nitritos , Peróxido de Hidrógeno , Óxido Nítrico , Ejercicio Físico/fisiología , Oxidación-Reducción , Superóxido Dismutasa , Homeostasis , Glucosa , Biomarcadores , Isoprostanos , Ingestión de Alimentos
20.
Mol Cell Endocrinol ; 578: 112050, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683909

RESUMEN

Vitamin D, and its receptor (VDR), play roles in muscle development/function, however, VDR detection in muscle has been controversial. Using different sample preparation methods and antibodies, we examined differences in muscle VDR protein abundance between two mouse strains and between mice and humans. The mouse D-6 VDR antibody was not reliable for detecting VDR in mouse muscle, but was suitable for human muscle, while the rabbit D2K6W antibody was valid for mouse and human muscle. VDR protein was generally lower in muscles from C57 B l/6 than FVB/N mice and was higher in human than mouse muscle. Two putative VDR bands were detected in human muscle, possibly representing VDR isoforms/splice variants, with marked inter-individual differences. This study provides new information on detecting VDR in muscle and on inter-mouse strain and inter-human individual differences in VDR expression. These findings may have implications for future pre-clinical and clinical studies and prompt further investigation to confirm possible VDR isoforms in human muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA