Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2312064121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530894

RESUMEN

Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas Portadoras/metabolismo , Quimiotaxis/fisiología , Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo
2.
PLoS Comput Biol ; 20(6): e1012208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900844

RESUMEN

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Protozoarias , Toxoplasma , Toxoplasma/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Mapas de Interacción de Proteínas/fisiología , Biología Computacional , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , Bases de Datos de Proteínas , Aprendizaje Automático , Análisis por Conglomerados
3.
Proc Natl Acad Sci U S A ; 119(28): e2204161119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787052

RESUMEN

The chemotaxis machinery of Escherichia coli has served as a model for exploring the molecular signaling mechanisms of transmembrane chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). Yet, fundamental questions about signal transmission through MCP molecules remain unanswered. Our work with the E. coli serine chemoreceptor Tsr has developed in vivo reporters that distinguish kinase-OFF and kinase-ON structures in the cytoplasmic methylation helix (MH) cap, which receives stimulus signals from an adjoining, membrane-proximal histidine kinase, adenylyl cyclases, MCPs, and phosphatases (HAMP) domain. The cytoplasmic helices of the Tsr homodimer interact mainly through packing interactions of hydrophobic residues at a and d heptad positions. We investigated the in vivo crosslinking properties of Tsr molecules bearing cysteine replacements at functionally tolerant g heptad positions in the N-terminal and C-terminal cap helices. Upon treatment of cells with bismaleimidoethane (BMOE), a bifunctional thiol-reagent, Tsr-G273C/Q504C readily formed a doubly crosslinked product in the presence of serine but not in its absence. Moreover, a serine stimulus combined with BMOE treatment during in vivo Förster resonance energy transfer-based kinase assays locked Tsr-G273C/Q504C in kinase-OFF output. An OFF-shifting lesion in MH1 (D269P) promoted the formation of the doubly crosslinked species in the absence of serine, whereas an ON-shifting lesion (G268P) suppressed the formation of the doubly crosslinked species. Tsr-G273C/Q504C also showed output-dependent crosslinking patterns in combination with ON-shifting and OFF-shifting adaptational modifications. Our results are consistent with a helix breathing-axial rotation-bundle repacking signaling mechanism and imply that in vivo crosslinking tools could serve to probe helix-packing transitions and their output consequences in other regions of the receptor molecule.


Asunto(s)
Escherichia coli , Proteínas Quimiotácticas Aceptoras de Metilo/química , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Modelos Moleculares , Serina/metabolismo
4.
BMC Bioinformatics ; 25(1): 121, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515063

RESUMEN

BACKGROUND: With the generation of vast compendia of biological datasets, the challenge is how best to interpret 'omics data alongside biochemical and other small-scale experiments to gain meaningful biological insights. Key to this challenge are computational methods that enable domain-users to generate novel hypotheses that can be used to guide future experiments. Of particular interest are flexible modeling platforms, capable of simulating a diverse range of biological systems with low barriers of adoption to those with limited computational expertise. RESULTS: We introduce Cell4D, a spatial-temporal modeling platform combining a robust simulation engine with integrated graphics visualization, a model design editor, and an underlying XML data model capable of capturing a variety of cellular functions. Cell4D provides an interactive visualization mode, allowing intuitive feedback on model behavior and exploration of novel hypotheses, together with a non-graphics mode, compatible with high performance cloud compute solutions, to facilitate generation of statistical data. To demonstrate the flexibility and effectiveness of Cell4D, we investigate the dynamics of CEACAM1 localization in T-cell activation. We confirm the importance of Ca2+ microdomains in activating calmodulin and highlight a key role of activated calmodulin on the surface expression of CEACAM1. We further show how lymphocyte-specific protein tyrosine kinase can help regulate this cell surface expression and exploit spatial modeling features of Cell4D to test the hypothesis that lipid rafts regulate clustering of CEACAM1 to promote trans-binding to neighbouring cells. CONCLUSIONS: Through demonstrating its ability to test and generate hypotheses, Cell4D represents an effective tool to help integrate knowledge across diverse, large and small-scale datasets.


Asunto(s)
Calmodulina , Fenómenos Fisiológicos Celulares , Simulación por Computador , Membrana Celular
5.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733748

RESUMEN

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Asunto(s)
ADN , ADN/química , ADN/metabolismo , Ligandos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Estructura Molecular , Conformación de Ácido Nucleico , Sitios de Unión , Relación Estructura-Actividad , Modelos Moleculares , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia Magnética , Línea Celular Tumoral
6.
Gut ; 72(8): 1472-1485, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36958817

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Asunto(s)
Arilamina N-Acetiltransferasa , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis Ulcerosa/metabolismo , Metaboloma , Heces , Arilamina N-Acetiltransferasa/metabolismo
7.
PLoS Comput Biol ; 18(9): e1010452, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074804

RESUMEN

Constraint-based modeling is a powerful framework for studying cellular metabolism, with applications ranging from predicting growth rates and optimizing production of high value metabolites to identifying enzymes in pathogens that may be targeted for therapeutic interventions. Results from modeling experiments can be affected at least in part by the quality of the metabolic models used. Reconstructing a metabolic network manually can produce a high-quality metabolic model but is a time-consuming task. At the same time, current methods for automating the process typically transfer metabolic function based on sequence similarity, a process known to produce many false positives. We created Architect, a pipeline for automatic metabolic model reconstruction from protein sequences. First, it performs enzyme annotation through an ensemble approach, whereby a likelihood score is computed for an EC prediction based on predictions from existing tools; for this step, our method shows both increased precision and recall compared to individual tools. Next, Architect uses these annotations to construct a high-quality metabolic network which is then gap-filled based on likelihood scores from the ensemble approach. The resulting metabolic model is output in SBML format, suitable for constraints-based analyses. Through comparisons of enzyme annotations and curated metabolic models, we demonstrate improved performance of Architect over other state-of-the-art tools, notably with higher precision and recall on the eukaryote C. elegans and when compared to UniProt annotations in two bacterial species. Code for Architect is available at https://github.com/ParkinsonLab/Architect. For ease-of-use, Architect can be readily set up and utilized using its Docker image, maintained on Docker Hub.


Asunto(s)
Caenorhabditis elegans , Redes y Vías Metabólicas , Animales , Bacterias , Anotación de Secuencia Molecular
8.
J Bacteriol ; 204(12): e0027822, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448786

RESUMEN

In isotropic environments, an Escherichia coli cell exhibits coordinated rotational switching of its flagellar motors, produced by fluctuations in the intracellular concentration of phosphorylated CheY (CheY-P) emanating from chemoreceptor signaling arrays. In this study, we show that these CheY-P fluctuations arise through modifications of chemoreceptors by two sensory adaptation enzymes: the methyltransferase CheR and the methylesterase CheB. A cell containing CheR, CheB, and the serine chemoreceptor Tsr exhibited motor synchrony, whereas a cell lacking CheR and CheB or containing enzymatically inactive forms did not. Tsr variants with different combinations of methylation-mimicking Q residues at the adaptation sites also failed to show coordinated motor switching in cells lacking CheR and CheB. Cells containing CheR, CheB, and Tsr [NDND], a variant in which the adaptation site residues are not substrates for CheR or CheB modifications, also lacked motor synchrony. TsrΔNWETF, which lacks a C-terminal pentapeptide-binding site for CheR and CheB, and the ribose-galactose receptor Trg, which natively lacks this motif, failed to produce coordinated motor switching, despite the presence of CheR and CheB. However, addition of the NWETF sequence to Trg enabled Trg-NWETF to produce motor synchrony, as the sole receptor type in cells containing CheR and CheB. Finally, CheBc, the catalytic domain of CheB, supported motor coordination in combination with CheR and Tsr. These results indicate that the coordination of motor switching requires CheR/CheB-mediated changes in receptor modification state. We conclude that the opposing receptor substrate-site preferences of CheR and CheB produce spontaneous blinking of the chemoreceptor array's output activity. IMPORTANCE Under steady-state conditions with no external stimuli, an Escherichia coli cell coordinately switches the rotational direction of its flagellar motors. Here, we demonstrate that the CheR and CheB enzymes of the chemoreceptor sensory adaptation system mediate this coordination. Stochastic fluctuations in receptor adaptation states trigger changes in signal output from the receptor array, and this array blinking generates fluctuations in CheY-P concentration that coordinate directional switching of the flagellar motors. Thus, in the absence of chemoeffector gradients, the sensory adaptation system controls run-tumble swimming of the cell, its optimal foraging strategy.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Quimiotaxis , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Células Quimiorreceptoras , Proteínas de Escherichia coli/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo
9.
PLoS Pathog ; 16(4): e1008281, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32236137

RESUMEN

Our understanding of the biofilm matrix components utilized by Gram-positive bacteria, and the signalling pathways that regulate their production are largely unknown. In a companion study, we developed a computational pipeline for the unbiased identification of homologous bacterial operons and applied this algorithm to the analysis of synthase-dependent exopolysaccharide biosynthetic systems. Here, we explore the finding that many species of Gram-positive bacteria have operons with similarity to the Pseudomonas aeruginosa pel locus. Our characterization of the pelDEADAFG operon from Bacillus cereus ATCC 10987, presented herein, demonstrates that this locus is required for biofilm formation and produces a polysaccharide structurally similar to Pel. We show that the degenerate GGDEF domain of the B. cereus PelD ortholog binds cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP), and that this binding is required for biofilm formation. Finally, we identify a diguanylate cyclase, CdgF, and a c-di-GMP phosphodiesterase, CdgE, that reciprocally regulate the production of Pel. The discovery of this novel c-di-GMP regulatory circuit significantly contributes to our limited understanding of c-di-GMP signalling in Gram-positive organisms. Furthermore, conservation of the core pelDEADAFG locus amongst many species of bacilli, clostridia, streptococci, and actinobacteria suggests that Pel may be a common biofilm matrix component in many Gram-positive bacteria.


Asunto(s)
Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Operón , Polisacáridos/metabolismo , Bacillus cereus/genética , Bacillus cereus/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Filogenia , Conformación Proteica
10.
Proc Natl Acad Sci U S A ; 116(31): 15651-15660, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31315979

RESUMEN

Motile Escherichia coli cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Histidina Quinasa/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Mutación , Transducción de Señal , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Estructura Secundaria de Proteína
11.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34666521

RESUMEN

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Asunto(s)
Antozoos , Termotolerancia , Animales , Antozoos/fisiología , Censos , Arrecifes de Coral , Florida
12.
PLoS Comput Biol ; 16(4): e1007721, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32236097

RESUMEN

In bacteria functionally related genes comprising metabolic pathways and protein complexes are frequently encoded in operons and are widely conserved across phylogenetically diverse species. The evolution of these operon-encoded processes is affected by diverse mechanisms such as gene duplication, loss, rearrangement, and horizontal transfer. These mechanisms can result in functional diversification, increasing the potential evolution of novel biological pathways, and enabling pre-existing pathways to adapt to the requirements of particular environments. Despite the fundamental importance that these mechanisms play in bacterial environmental adaptation, a systematic approach for studying the evolution of operon organization is lacking. Herein, we present a novel method to study the evolution of operons based on phylogenetic clustering of operon-encoded protein families and genomic-proximity network visualizations of operon architectures. We applied this approach to study the evolution of the synthase dependent exopolysaccharide (EPS) biosynthetic systems: cellulose, acetylated cellulose, poly-ß-1,6-N-acetyl-D-glucosamine (PNAG), Pel, and alginate. These polymers have important roles in biofilm formation, antibiotic tolerance, and as virulence factors in opportunistic pathogens. Our approach revealed the complex evolutionary landscape of EPS machineries, and enabled operons to be classified into evolutionarily distinct lineages. Cellulose operons show phyla-specific operon lineages resulting from gene loss, rearrangement, and the acquisition of accessory loci, and the occurrence of whole-operon duplications arising through horizonal gene transfer. Our evolution-based classification also distinguishes between PNAG production from Gram-negative and Gram-positive bacteria on the basis of structural and functional evolution of the acetylation modification domains shared by PgaB and IcaB loci, respectively. We also predict several pel-like operon lineages in Gram-positive bacteria and demonstrate in our companion paper (Whitfield et al PLoS Pathogens, in press) that Bacillus cereus produces a Pel-dependent biofilm that is regulated by cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP).


Asunto(s)
Biología Computacional/métodos , Operón/genética , Operón/fisiología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Evolución Biológica , Evolución Molecular , Duplicación de Gen , Filogenia , Factores de Virulencia
13.
Nature ; 525(7569): 339-44, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26344197

RESUMEN

Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems.


Asunto(s)
Evolución Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mapas de Interacción de Proteínas , Animales , Conjuntos de Datos como Asunto , Humanos , Mapeo de Interacción de Proteínas , Reproducibilidad de los Resultados , Biología de Sistemas , Espectrometría de Masas en Tándem
14.
Proc Natl Acad Sci U S A ; 115(15): E3519-E3528, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581254

RESUMEN

Environmental awareness is an essential attribute for all organisms. The chemotaxis system of Escherichia coli provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense chemical gradients with transmembrane proteins [methyl-accepting chemotaxis proteins (MCPs)] that have an extracellular ligand-binding domain and intracellular histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases (HAMP) and signaling domains that govern locomotor behavior. HAMP domains are versatile input-output elements that operate in a variety of bacterial signaling proteins, including the sensor kinases of two-component regulatory systems. The MCP HAMP domain receives stimulus information and in turn modulates output signaling activity. This study describes mutants of the Escherichia coli serine chemoreceptor, Tsr, that identify a heptad-repeat structural motif (LLF) at the membrane-proximal end of the receptor signaling domain that is critical for HAMP output control. The homodimeric Tsr signaling domain is an extended, antiparallel, four-helix bundle that controls the activity of an associated kinase. The N terminus of each subunit adjoins the HAMP domain; the LLF residues lie at the C terminus of the methylation-helix bundle. We found, by using in vivo Förster resonance energy transfer kinase assays, that most amino acid replacements at any of the LLF residues abrogate chemotactic responses to serine and lock Tsr output in a kinase-active state, impervious to HAMP-mediated down-regulation. We present evidence that the LLF residues may function like a leucine zipper to promote stable association of the C-terminal signaling helices, thereby creating a metastable helix-packing platform for the N-terminal signaling helices that facilitates conformational control by the HAMP domains in MCP-family chemoreceptors.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiología , Quimiotaxis/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Dominios Proteicos , Serina/metabolismo , Transducción de Señal
15.
BMC Genet ; 21(1): 5, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31952471

RESUMEN

BACKGROUND: To satisfy an increasing demand for dietary protein, the poultry industry has employed genetic selection to increase the growth rate of broilers by over 400% in the past 50 years. Although modern broilers reach a marketable weight of ~ 2 kg in a short span of 35 days, a speed twice as fast as a broiler 50 years ago, the expedited growth has been associated with several negative detrimental consequences. Aside from heart and musculoskeletal problems, which are direct consequences of additional weight, the immune response is also thought to be altered in modern broilers. RESULTS: Given that identifying the underlying genetic basis responsible for a less sensitive innate immune response would be economically beneficial for poultry breeding, we decided to compare the genomes of two unselected meat control strains that are representative of broilers from 1957 and 1978, and a current commercial broiler line. Through analysis of genetic variants, we developed a custom prioritization strategy to identify genes and pathways that have accumulated genetic changes and are biologically relevant to immune response and growth performance. Our results highlight two genes, TLR3 and PLIN3, with genetic variants that are predicted to enhance growth performance at the expense of immune function. CONCLUSIONS: Placing these new genomes in the context of other chicken lines, reveal genetic changes that have specifically arisen in selective breeding programs that were implemented in the last 50 years.


Asunto(s)
Pollos/genética , Pollos/inmunología , Variación Genética , Inmunidad/genética , Selección Artificial , Animales , Variaciones en el Número de Copia de ADN , Genoma , Genómica/métodos , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética
16.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31982929

RESUMEN

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Asunto(s)
Antozoos/microbiología , Dinoflagelados/fisiología , Polisacáridos/fisiología , Simbiosis , Animales , Interacciones Microbiota-Huesped , Polisacáridos/biosíntesis , Polisacáridos/química
17.
Inorg Chem ; 59(3): 2011-2023, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944690

RESUMEN

Deprotonation of [7-(1'-closo-1',2'-C2B10H11)-nido-7,8-C2B9H11]- and reaction with [Rh(PPh3)3Cl] results in isomerization of the metalated cage and the formation of [8-(1'-closo-1',2'-C2B10H11)-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (1). Similarly, deprotonation/metalation of [8'-(7-nido-7,8-C2B9H11)-2'-(p-cymene)-closo-2',1',8'-RuC2B9H10]- and [8'-(7-nido-7,8-C2B9H11)-2'-Cp*-closo-2',1',8'-CoC2B9H10]- affords [8-{8'-2'-(p-cymene)-closo-2',1',8'-RuC2B9H10}-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (2) and [8-(8'-2'-Cp*-closo-2',1',8'-CoC2B9H10)-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (3), respectively, as diastereoisomeric mixtures. The performances of compounds 1-3 as catalysts in the isomerization of 1-hexene and in the hydrosilylation of acetophenone are compared with those of the known single-cage species [3-H-3,3-(PPh3)2-closo-3,1,2-RhC2B9H11] (I) and [2-H-2,2-(PPh3)2-closo-2,1,12-RhC2B9H11] (V), the last two compounds also being the subjects of 103Rh NMR spectroscopic studies, the first such investigations of rhodacarboranes. In alkene isomerization all the 2,1,8- or 2,1,12-RhC2B9 species (1-3, V) outperform the 3,1,2-RhC2B9 compound I, while for hydrosilylation the single-cage compounds I and V are better catalysts than the double-cage species 1-3.

18.
Nucleic Acids Res ; 46(1): 42-53, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29194552

RESUMEN

This manuscript reports the molecular basis for double-stranded DNA (dsDNA) binding of hairpin polyamides incorporating a 5-alkyl thiazole (Nt) unit. Hairpin polyamides containing an N-terminal Nt unit induce higher melting stabilisation of target dsDNA sequences relative to an archetypical hairpin polyamide incorporating an N-terminal imidazole (Im) unit. However, modification of the N-terminus from Im to Nt-building blocks results in an increase in dsDNA binding affinity but lower G-selectivity. A general G-selectivity trend is observed for Nt-containing polyamide analogues. G-selectivity increases as the steric bulk in the Nt 5-position increases. Solution-based NMR structural studies reveal differences in the modulation of the target DNA duplex of Nt-containing hairpin polyamides relative to the Im-containing archetype. A structural hallmark of an Nt polyamide•dsDNA complex is a more significant degree of major groove compression of the target dsDNA sequence relative to the Im-containing hairpin polyamide.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Nylons/química , Tiazoles/química , Secuencia de Bases , Unión Competitiva , ADN/genética , ADN/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Estructura Molecular , Desnaturalización de Ácido Nucleico , Nylons/metabolismo , Tiazoles/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(36): E7583-E7591, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827352

RESUMEN

A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON-OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands.


Asunto(s)
Adaptación Biológica/fisiología , Células Quimiorreceptoras/metabolismo , Proteínas Bacterianas/metabolismo , Catálisis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Metiltransferasas/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología
20.
Crit Rev Biochem Mol Biol ; 52(3): 254-273, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276701

RESUMEN

The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.


Asunto(s)
Apicomplexa , Regulación de la Expresión Génica/fisiología , Genoma de Protozoos/fisiología , Estadios del Ciclo de Vida/fisiología , Proteómica , Proteínas Protozoarias , Animales , Apicomplexa/genética , Apicomplexa/metabolismo , Apicomplexa/patogenicidad , Humanos , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA