Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 197(4): 1212-20, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27430716

RESUMEN

In many nonmammalian vertebrates, the genomic organization of the MHC class I region leads to biased expression of a single classical MHC class I gene coevolving with TAP transporters, whereas class I genes are poorly expressed. This contrasts to the three codominantly expressed classical MHC class I genes in humans and mice. In a sequenced haplotype from White Pekin duck, Anas platyrhynchos, there is one predominantly expressed MHC class I, UAA, although they have five MHC class I genes in the complex, arranged TAP1-TAP2-UAA-UBA-UCA-UDA-UEA The UAA gene, situated proximal to the TAP2 gene, is expressed at levels 10-fold greater than that of another expressed gene, UDA. Three duck MHC class I genes (UBA, UCA, and UEA) are predicted to be partially or completely inactivated by promoter defects, introduction of in-frame stop codon, or the lack of a polyadenylation signal. In this study, we confirm that UBA, UCA, and UEA are indeed inactivated through genetic defects at the promoter, whereas UAA and UDA have functionally equivalent promoters. To examine promoter accessibility, we performed bisulfite sequencing and show that none of the MHC class I promoters are inactivated by methylation. We determine that UDA is differentially regulated through its 3' untranslated region. Namely, expression of UDA is downregulated by let-7 microRNA, whereas the predominantly expressed MHC class I UAA is not. Regulation of UDA by let-7 microRNA suggests that the lower expression level is maintained for its function in immunity.


Asunto(s)
Patos/genética , Patos/inmunología , Regulación de la Expresión Génica/genética , Genes MHC Clase I/genética , MicroARNs/genética , Animales , Antígenos de Histocompatibilidad Clase I/genética , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma
2.
J Immunol ; 197(3): 783-94, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342841

RESUMEN

MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.


Asunto(s)
Patos/genética , Patos/inmunología , Genes MHC Clase I/genética , Genes MHC Clase I/inmunología , Alelos , Animales , Genotipo , Polimorfismo Genético , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
J Immunol ; 175(10): 6702-12, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16272326

RESUMEN

MHC class I proteins mediate a variety of functions in antiviral defense. In humans and mice, three MHC class I loci each contribute one or two alleles and each can present a wide variety of peptide Ags. In contrast, many lower vertebrates appear to use a single MHC class I locus. Previously we showed that a single locus was predominantly expressed in the mallard duck (Anas platyrhynchos) and that locus was adjacent to the polymorphic transporter for the Ag-processing (TAP2) gene. Characterization of a genomic clone from the same duck now allows us to compare genes to account for their differential expression. The clone carried five MHC class I genes and the TAP genes in the following gene order: TAP1, TAP2, UAA, UBA, UCA, UDA, and UEA. We designated the predominantly expressed gene UAA. Transcripts corresponding to the UDA locus were expressed at a low level. No transcripts were found for three loci, UBA, UCA, and UEA. UBA had a deletion within the promoter sequences. UCA carried a stop codon in-frame. UEA did not have a polyadenylation signal sequence. All sequences differed primarily in peptide-binding pockets and otherwise had the hallmarks of classical MHC class I alleles. Despite the presence of additional genes in the genome, the duck expresses predominantly one MHC class I gene. The limitation to one expressed MHC class I gene may have functional consequences for the ability of ducks to eliminate viral pathogens, such as influenza.


Asunto(s)
Patos/genética , Patos/inmunología , Genes MHC Clase I , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Pollos , Secuencia Conservada , ADN Complementario/genética , Evolución Molecular , Duplicación de Gen , Expresión Génica , Variación Genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA