RESUMEN
Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.
Asunto(s)
Neoplasias , Proteogenómica , Humanos , Terapia Combinada , Genómica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Proteómica , Escape del TumorRESUMEN
Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenómica , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Unión Proteica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , UbiquitinaciónRESUMEN
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Asunto(s)
Adenocarcinoma del Pulmón , Diferenciación Celular , Células Epiteliales , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Aneuploidia , Carcinógenos/toxicidad , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Organoides/efectos de los fármacos , Organoides/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tasa de Supervivencia , Productos de Tabaco/efectos adversos , Productos de Tabaco/toxicidadRESUMEN
BACKGROUND: Studies of the immune landscape led to breakthrough trials of programmed death-1 (PD-1) inhibitors for recurrent/metastatic head and neck squamous cell carcinoma therapy. This study investigated the timing, influence of somatic copy-number alterations (SCNAs), and clinical implications of PD-L1 and immune-cell patterns in oral precancer (OPC). METHODS: The authors evaluated spatial CD3, CD3/8, and CD68 density (cells/mm2 ) and PD-L1 (membranous expression in cytokeratin-positive intraepithelial neoplastic cells and CD68) patterns by multiplex immunofluorescence in a 188-patient prospective OPC cohort, characterized by clinical, histologic, and SCNA risk factors and protocol-specified primary end point of invasive cancer. The authors used Wilcoxon rank-sum and Fisher exact tests, linear mixed effect models, mediation, and Cox regression and recursive-partitioning analyses. RESULTS: Epithelial, but not CD68 immune-cell, PD-L1 expression was detected in 28% of OPCs, correlated with immune-cell infiltration, 9p21.3 loss of heterozygosity (LOH), and inferior oral cancer-free survival (OCFS), notably in OPCs with low CD3/8 cell density, dysplasia, and/or 9p21.3 LOH. High CD3/8 cell density in dysplastic lesions predicted better OCFS and eliminated the excess risk associated with prior oral cancer and dysplasia. PD-L1 and CD3/8 patterns revealed inferior OCFS in PD-L1 high intrinsic induction and dysplastic immune-cold subgroups. CONCLUSION: This report provides spatial insight into the immune landscape and drivers of OPCs, and a publicly available immunogenomic data set for future precancer interrogation. The data suggest that 9p21.3 LOH triggers an immune-hot inflammatory phenotype; whereas increased 9p deletion size encompassing CD274 at 9p24.1 may contribute to CD3/8 and PD-L1 depletion during invasive transition. The inferior OCFS in PD-L1-high, immune-cold OPCs support the development of T-cell recruitment strategies.
Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Antígeno B7-H1 , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Genómica , Neoplasias de Cabeza y Cuello/metabolismo , Linfocitos Infiltrantes de Tumor , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Estudios Prospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral/genéticaRESUMEN
The past decade has witnessed a revolution in cancer treatment by the shift from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular the immune-checkpoint inhibitors (ICIs). These immunotherapies selectively release the host immune system against the tumour and have shown unprecedented durable remission for patients with cancers that were thought incurable such as advanced non-small cell lung cancer (aNSCLC). The prediction of therapy response is based since the first anti-PD-1/PD-L1 molecules FDA and EMA approvals on the level of PD-L1 tumour cells expression evaluated by immunohistochemistry, and recently more or less on tumour mutation burden in the USA. However, not all aNSCLC patients benefit from immunotherapy equally, since only around 30% of them received ICIs and among them 30% have an initial response to these treatments. Conversely, a few aNSCLC patients could have an efficacy ICIs response despite low PD-L1 tumour cells expression. In this context, there is an urgent need to look for additional robust predictive markers for ICIs efficacy in thoracic oncology. Understanding of the mechanisms that enable cancer cells to adapt to and eventually overcome therapy and identifying such mechanisms can help circumvent resistance and improve treatment. However, more than a unique universal marker, the evaluation of several molecules in the tumour at the same time, particularly by using multiplex immunostaining is a promising open room to optimise the selection of patients who benefit from ICIs. Therefore, urgent further efforts are needed to optimise to individualise immunotherapy based on both patient-specific and tumour-specific characteristics. This review aims to rethink the role of multiplex immunostaining in immuno-thoracic oncology, with the current advantages and limitations in the near-daily practice use.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1 , Inmunoterapia/métodos , Análisis de la Célula IndividualRESUMEN
Our understanding of the molecular mechanisms underlying postsurgical recurrence of non-small cell lung cancer (NSCLC) is rudimentary. Molecular and T cell repertoire intratumor heterogeneity (ITH) have been reported to be associated with postsurgical relapse; however, how ITH at the cellular level impacts survival is largely unknown. Here we report the analysis of 2880 multispectral images representing 14.2% to 27% of tumor areas from 33 patients with stage I NSCLC, including 17 cases (relapsed within 3 years after surgery) and 16 controls (without recurrence ≥5 years after surgery) using multiplex immunofluorescence. Spatial analysis was conducted to quantify the minimum distance between different cell types and immune cell infiltration around malignant cells. Immune ITH was defined as the variance of immune cells from 3 intratumor regions. We found that tumors from patients having relapsed display different immune biology compared with nonrecurrent tumors, with a higher percentage of tumor cells and macrophages expressing PD-L1 (P =.031 and P =.024, respectively), along with an increase in regulatory T cells (Treg) (P =.018), antigen-experienced T cells (P =.025), and effector-memory T cells (P =.041). Spatial analysis revealed that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) or antigen-experienced cytotoxic T cells (CD3+CD8+PD-1+) in the tumor was associated with poor overall survival (P =.021 and P =.006, respectively). A higher degree of Treg ITH was associated with inferior recurrence-free survival regardless of tumor mutational burden (P =.022), neoantigen burden (P =.021), genomic ITH (P =.012) and T cell repertoire ITH (P =.001). Using multiregion multiplex immunofluorescence, we characterized ITH at the immune cell level along with whole exome and T cell repertoire sequencing from the same tumor regions. This approach highlights the role of immunoregulatory and coinhibitory signals as well as their spatial distribution and ITH that define the hallmarks of tumor relapse of stage I NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno B7-H1 , Recurrencia Local de Neoplasia/genética , Linfocitos T Citotóxicos/patología , Linfocitos T CD8-positivosRESUMEN
Chimeric antigen receptor (CAR) T-cells anti-CD30 is an innovative therapeutic option that has been used to treat cases of refractory/relapsed (R/R) classic Hodgkin lymphoma (CHL). Limited data are available regarding the CD30 expression status of patients who relapsed after this therapy. This is the first study to show decreased CD30 expression in R/R CHL in patients (n = 5) who underwent CAR T-cell therapy in our institution between 2018 and 2022. Although conventional immunohistochemical assays showed decreased CD30 expression in neoplastic cells in all cases (8/8) the tyramide amplification assay and RNAScope in situ hybridisation detected CD30 expression at different levels in 100% (n = 8/8) and 75% (n = 3/4), respectively. Hence, our findings document that certain levels of CD30 expression are retained by the neoplastic cells. This is not only of biological interest but also diagnostically important, as detection of CD30 is an essential factor in establishing a diagnosis of CHL.
Asunto(s)
Enfermedad de Hodgkin , Inmunoconjugados , Humanos , Enfermedad de Hodgkin/patología , Antígeno Ki-1/metabolismo , Inmunoterapia Adoptiva , Inmunoconjugados/uso terapéuticoRESUMEN
INTRODUCTION: Generating high levels of immunosuppressive adenosine in the tumor microenvironment contributes to cancer immune evasion. CD39 and CD73 hydrolyze adenosine triphosphate into adenosine; thus, efforts have been made to target this pathway for cancer immunotherapy. Our objective was optimizing a multiplex immunofluorescence (mIF) panel to explore the role of CD39 and CD73 within the tumor microenvironment. MATERIALS AND METHODS: In three-time points, a small cohort (n=8 ) of colorectal and pancreatic adenocarcinomas were automated staining using an mIF panel against CK, CD3, CD8, CD20, CD39, CD73 and CD68 to compare them with individual markers immunohistochemistry (IHC) for internal panel validation. Densities of immune cells and distances from different tumor-associated immune cells to tumor cells were exploratory assessment and compared with clinicopathologic variables and outcomes. RESULTS: Comparing the three-time points and individual IHC staining results, we demonstrated high reproducibility of the mIF panel. CD39 and CD73 expression was low in malignant cells; the exploratory analysis showed higher densities of CD39 expression by various cells, predominantly stromal cells, followed by T cells, macrophages, and B cells. No expression of CD73 by B cells or macrophages was detected. Distance analysis revealed proximity of cytotoxic T cells, macrophages, and T cells expressing CD39 to malignant cells, suggesting a close regulatory signal driven by this adenosine marker. CONCLUSIONS: We optimized an mIF panel for detection of markers in the adenosine pathway, an emerging clinically relevant pathway. The densities and spatial distribution demonstrated that this pathway may modulate aspects of the tumor immune microenvironment.
RESUMEN
INTRODUCTION: Representative regions of interest (ROIs) analysis from the whole slide images (WSI) are currently being used to study immune markers by multiplex immunofluorescence (mIF) and single immunohistochemistry (IHC). However, the amount of area needed to be analyzed to be representative of the entire tumor in a WSI has not been defined. METHODS: We labeled tumor-associated immune cells by mIF and single IHC in separate cohorts of non-small cell lung cancer (NSCLC) samples and we analyzed them as whole tumor area as well as using different number of ROIs to know how much area will be need to represent the entire tumor area. RESULTS: For mIF using the InForm software and ROI of 0.33 mm2 each, we observed that the cell density data from five randomly selected ROIs is enough to achieve, in 90% of our samples, more than 0.9 of Spearman correlation coefficient and for single IHC using ScanScope tool box from Aperio and ROIs of 1 mm2 each, we found that the correlation value of more than 0.9 was achieved using 5 ROIs in a similar cohort. Additionally, we also observed that each cell phenotype in mIF influence differently the correlation between the areas analyzed by the ROIs and the WSI. Tumor tissue with high intratumor epithelial and immune cells phenotype, quality, and spatial distribution heterogeneity need more area analyzed to represent better the whole tumor area. CONCLUSION: We found that at minimum 1.65 mm2 area is enough to represent the entire tumor areas in most of our NSCLC samples using mIF.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adhesión en Parafina , Inmunohistoquímica , Técnica del Anticuerpo FluorescenteRESUMEN
BACKGROUND: Immune checkpoint inhibitor (ICI)-based cancer therapies cause a variety of cutaneous immune-related adverse events (irAEs) including immunobullous skin eruptions like bullous pemphigoid (BP). However, little is known about the underlying immunopathogenic drivers of these reactions, and understanding the unique gene expression profile and immune composition of BP-irAE remains a critical knowledge gap in the field of oncodermatology/oncodermatopathology. METHODS: BP-irAE (n = 8) and de novo BP control (n = 8) biopsy samples were subjected to gene expression profiling using the NanoString® Technologies nCounter PanCancer Immune Profiling Panel. Multiplex immunofluorescence (mIF) studies using markers for T-cells (CD3 and CD8), T helper 1 (TH 1) cells (Tbet), TH 2 cells (Gata3), TH 17 cells (RORγT), and regulatory T-cells (Tregs; FoxP3) were further evaluated using InForm® image analysis. RESULTS: Compared with de novo BP controls, BP-irAE samples exhibited upregulation of 30 mRNA transcripts (p < 0.025), including toll-like receptor 4 (TLR4) and genes associated with complement activation, and downregulation of 89 mRNA transcripts (p < 0.025), including genes associated with TH 2, TH 17, and B-cell immune response. BP-irAE demonstrated a greater density of Tbet+ (TH 1) cells in the dermis (p = 0.004) and fewer Tregs in the blister floor (p = 0.028) when compared with that of de novo control BP samples. CONCLUSIONS: BP-irAE exhibited activation of the TLR4/complement-driven classical innate immune response pathway, with dermal TH 1 immune cell polarization and decreased Tregs in the blister floor. TLR/complement signaling may underlie the immunopathogenesis of BP-irAE.
Asunto(s)
Penfigoide Ampolloso , Humanos , Vesícula/metabolismo , Proteínas del Sistema Complemento , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Inmunidad Innata , Penfigoide Ampolloso/patología , ARN Mensajero , Receptor Toll-Like 4/metabolismo , Regulación hacia ArribaRESUMEN
BACKGROUND: Few standard treatment options are available for patients with metastatic sarcomas. We did this trial to evaluate the efficacy, safety, and changes in the tumour microenvironment for durvalumab, an anti-PD-L1 drug, and tremelimumab, an anti-CTLA-4 drug, across multiple sarcoma subtypes. METHODS: In this single-centre phase 2 trial, done at The University of Texas MD Anderson Cancer Center (Houston, TX USA), patients aged 18 years or older with advanced or metastatic sarcoma with an Eastern Cooperative Oncology Group performance status of 0 or 1 who had received at least one previous line of systemic therapy were enrolled in disease subtype-specific groups (liposarcoma, leiomyosarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma, synovial sarcoma, osteosarcoma, alveolar soft-part sarcoma, chordoma, and other sarcomas). Patients received 1500 mg intravenous durvalumab and 75 mg intravenous tremelimumab for four cycles, followed by durvalumab alone every 4 weeks for up to 12 months. The primary endpoint was progression-free survival at 12 weeks in the intention-to-treat population (all patients who received at least one dose of treatment). Safety was also analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02815995, and is completed. FINDINGS: Between Aug 17, 2016, and April 9, 2018, 62 patients were enrolled, of whom 57 (92%) received treatment and were included in the intention-to-treat population. With a median follow-up of 37·2 months (IQR 1·8-10·1), progression-free survival at 12 weeks was 49% (95% CI 36-61). 21 grade 3-4 treatment-related adverse events were reported, the most common of which were increased lipase (four [7%] of 57 patients), colitis (three [5%] patients), and pneumonitis (three [5%] patients). Nine (16%) patients had a treatment related serious adverse event. One patient had grade 5 pneumonitis and colitis. INTERPRETATION: The combination of durvalumab and tremelimumab is an active treatment regimen for advanced or metastatic sarcoma and merits evaluation in specific subsets in future trials. FUNDING: AstraZeneca.
Asunto(s)
Neoplasias Óseas , Colitis , Osteosarcoma , Neumonía , Sarcoma de Parte Blanda Alveolar , Neoplasias de los Tejidos Blandos , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Óseas/tratamiento farmacológico , Humanos , Osteosarcoma/tratamiento farmacológico , Sarcoma de Parte Blanda Alveolar/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Microambiente TumoralRESUMEN
Triple-negative breast cancer (TNBC) with high tumour-infiltrating lymphocytes (TILs) has been associated with a promising prognosis. To better understand the prognostic value of immune cell subtypes in TNBC, we characterised TILs and the interaction between tumour cells and immune cell subtypes. A total of 145 breast cancer tissues were stained by multiplex immunofluorescence (mIF), including panel 1 (PD-L1, PD-1, CD3, CD8, CD68 and CK) and panel 2 (Foxp3, Granzyme B, CD45RO, CD3, CD8 and CK). Phenotypes were analysed and quantified by pathologists using InForm software. We found that in the ER-negative (ER <1% and HER2-negative) group and the ER/PR-low positive (ER 1-9% and HER2-negative) group, 11.2% and 7.1% of patients were PD-L1+ by the tumour cell score, 29.0% and 28.6% were PD-L1+ by the modified immune cell score and 30.8% and 32.1% were PD-L1+ by the combined positive score. We combined ER-negative and ER/PR-low positive cases for the survival analysis since a 10% cut-off is often used in clinical practice for therapeutic purposes. The densities of PD-L1+ tumour cells (HR: 0.366, 95% CI: 0.138-0.970; p = 0.043) within the tumour compartment and CD3+ immune cells in the total area (tumour and stromal compartments combined) (HR: 0.213, 95% CI: 0.070-0.642; p = 0.006) were favourable prognostic biomarkers for overall survival (OS) in TNBC. The density of effector/memory cytotoxic T cells (CD3+CD8+CD45RO+) in the tumour compartment was an independent prognostic biomarker for OS (HR: 0.232, 95% CI: 0.086-0.628; p = 0.004) and DFS (HR: 0.183, 95% CI: 0.1301-0.744; p = 0.009) in TNBC. Interestingly, spatial data suggested that patients with a higher density of PD-L1+ tumour cells had shorter cell-cell distances from tumour cells to cytotoxic T cells (p < 0.01). In conclusion, we found that phenotyping tumour immune cells by mIF is highly informative in understanding the immune microenvironment in TNBC. PD-L1+ tumour cells, total T cells and effector/memory cytotoxic T cells are promising prognostic biomarkers in TNBC.
Asunto(s)
Memoria Inmunológica , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1 , Biomarcadores de Tumor , Complejo CD3/inmunología , Linfocitos T CD8-positivos/patología , Humanos , Antígenos Comunes de Leucocito/inmunología , Linfocitos Infiltrantes de Tumor , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente TumoralRESUMEN
Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.
Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Antineoplásicos/inmunología , Lipocalina 2/genética , Lipocalina 2/inmunología , Neoplasias Pulmonares/inmunología , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Animales , Biomarcadores/sangre , Femenino , Regulación de la Expresión Génica , Humanos , Lipocalina 2/sangre , Masculino , Ratones , ARN MensajeroRESUMEN
The deadly complication of brain metastasis (BM) is largely confined to a relatively narrow cross-section of systemic malignancies, suggesting a fundamental role for biological mechanisms shared across commonly brain metastatic tumor types. To identify and characterize such mechanisms, we performed genomic, transcriptional, and proteomic profiling using whole-exome sequencing, mRNA-seq, and reverse-phase protein array analysis in a cohort of the lung, breast, and renal cell carcinomas consisting of BM and patient-matched primary or extracranial metastatic tissues. While no specific genomic alterations were associated with BM, correlations with impaired cellular immunity, upregulated oxidative phosphorylation (OXPHOS), and canonical oncogenic signaling pathways including phosphoinositide 3-kinase (PI3K) signaling, were apparent across multiple tumor histologies. Multiplexed immunofluorescence analysis confirmed significant T cell depletion in BM, indicative of a fundamentally altered immune microenvironment. Moreover, functional studies using in vitro and in vivo modeling demonstrated heightened oxidative metabolism in BM along with sensitivity to OXPHOS inhibition in murine BM models and brain metastatic derivatives relative to isogenic parentals. These findings demonstrate that pathophysiological rewiring of oncogenic signaling, cellular metabolism, and immune microenvironment broadly characterizes BM. Further clarification of this biology will likely reveal promising targets for therapeutic development against BM arising from a broad variety of systemic cancers.
Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Dermatoglifia del ADN/métodos , Genómica/métodos , Animales , Secuencia de Bases , Neoplasias Encefálicas/inmunología , Supervivencia Celular , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Análisis por Matrices de Proteínas , Proteómica , Superóxido Dismutasa/metabolismo , Análisis de Supervivencia , Secuenciación del ExomaRESUMEN
BACKGROUND: Non-small-cell lung cancer (NSCLC) is terminal in most patients with locally advanced stage disease. We aimed to assess the antitumour activity and safety of neoadjuvant chemoimmunotherapy for resectable stage IIIA NSCLC. METHODS: This was an open-label, multicentre, single-arm phase 2 trial done at 18 hospitals in Spain. Eligible patients were aged 18 years or older with histologically or cytologically documented treatment-naive American Joint Committee on Cancer-defined stage IIIA NSCLC that was deemed locally to be surgically resectable by a multidisciplinary clinical team, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received neoadjuvant treatment with intravenous paclitaxel (200 mg/m2) and carboplatin (area under curve 6; 6 mg/mL per min) plus nivolumab (360 mg) on day 1 of each 21-day cycle, for three cycles before surgical resection, followed by adjuvant intravenous nivolumab monotherapy for 1 year (240 mg every 2 weeks for 4 months, followed by 480 mg every 4 weeks for 8 months). The primary endpoint was progression-free survival at 24 months, assessed in the modified intention-to-treat population, which included all patients who received neoadjuvant treatment, and in the per-protocol population, which included all patients who had tumour resection and received at least one cycle of adjuvant treatment. Safety was assessed in the modified intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT03081689, and is ongoing but no longer recruiting patients. FINDINGS: Between April 26, 2017, and Aug 25, 2018, we screened 51 patients for eligibility, of whom 46 patients were enrolled and received neoadjuvant treatment. At the time of data cutoff (Jan 31, 2020), the median duration of follow-up was 24·0 months (IQR 21·4-28·1) and 35 of 41 patients who had tumour resection were progression free. At 24 months, progression-free survival was 77·1% (95% CI 59·9-87·7). 43 (93%) of 46 patients had treatment-related adverse events during neoadjuvant treatment, and 14 (30%) had treatment-related adverse events of grade 3 or worse; however, none of the adverse events were associated with surgery delays or deaths. The most common grade 3 or worse treatment-related adverse events were increased lipase (three [7%]) and febrile neutropenia (three [7%]). INTERPRETATION: Our results support the addition of neoadjuvant nivolumab to platinum-based chemotherapy in patients with resectable stage IIIA NSCLC. Neoadjuvant chemoimmunotherapy could change the perception of locally advanced lung cancer as a potentially lethal disease to one that is curable. FUNDING: Bristol-Myers Squibb, Instituto de Salud Carlos III, European Union's Horizon 2020 research and innovation programme.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carboplatino/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Nivolumab/administración & dosificación , Anciano , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Carboplatino/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante/efectos adversos , Estadificación de Neoplasias , Nivolumab/efectos adversos , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Supervivencia sin Progresión , España/epidemiología , Resultado del TratamientoRESUMEN
Enhanced tumor glycolytic activity is a mechanism by which tumors induce an immunosuppressive environment to resist adoptive T cell therapy; therefore, methods of assessing intratumoral glycolytic activity are of considerable clinical interest. In this study, we characterized the relationships among tumor 18F-fluorodeoxyglucose (FDG) retention, tumor metabolic and immune phenotypes, and survival in patients with resected non-small cell lung cancer (NSCLC). We retrospectively analyzed tumor preoperative positron emission tomography (PET) 18F-FDG uptake in 59 resected NSCLCs and investigated correlations between PET parameters (SUVMax, SUVTotal, SUVMean, TLG), tumor expression of glycolysis- and immune-related genes, and tumor-associated immune cell densities that were quantified by immunohistochemistry. Tumor glycolysis-associated immune gene signatures were analyzed for associations with survival outcomes. We found that each 18F-FDG PET parameter was positively correlated with tumor expression of glycolysis-related genes. Elevated 18F-FDG SUVMax was more discriminatory of glycolysis-associated changes in tumor immune phenotypes than other 18F-FDG PET parameters. Increased SUVMax was associated with multiple immune factors characteristic of an immunosuppressive and poorly immune infiltrated tumor microenvironment, including elevated PD-L1 expression, reduced CD57+ cell density, and increased T cell exhaustion gene signature. Elevated SUVMax identified immune-related transcriptomic signatures that were associated with enhanced tumor glycolytic gene expression and poor clinical outcomes. Our results suggest that 18F-FDG SUVMax has potential value as a noninvasive, clinical indicator of tumor immunometabolic phenotypes in patients with resectable NSCLC and warrants investigation as a potential predictor of therapeutic response to immune-based treatment strategies.
Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral/inmunología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Glucólisis , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirugía , Pronóstico , Radiofármacos/metabolismo , Estudios Retrospectivos , Tasa de Supervivencia , TranscriptomaRESUMEN
BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the principal obstacles for the lung transplantation (LTx) success. Several strategies have been adopted to minimize the effects of IRI in lungs, including ex vivo conditioning of the grafts and the use of antioxidant drugs, such as methylene blue (MB). We hypothesized that MB could minimize the effects of IRI in a LTx rodent model. METHODS: Forty rats were divided into four groups (n = 10) according to treatment (saline solution or MB) and graft cold ischemic time (3 or 6 h). All animals underwent unilateral LTx. Recipients received 2 mL of saline or MB intraperitoneally before transplantation. After 2 h of reperfusion, arterial blood and exhaled nitric oxide samples were collected and bronchoalveolar lavage performed. Then animals were euthanized, and histopathology analysis as well as cell counts and cytokine levels measurements in bronchoalveolar lavage fluid were performed. RESULTS: There was a significant decrease in exhaled nitric oxide, neutrophils, interleukin-6, and tumor necrosis factor-α in MB-treated animals. PaO2 and uric acid levels were higher in MB group. CONCLUSIONS: MB was able in attenuating IRI in this LTx model.
Asunto(s)
Antioxidantes/farmacología , Trasplante de Pulmón/métodos , Azul de Metileno/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/cirugía , Animales , Líquido del Lavado Bronquioalveolar , Isquemia Fría , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Hemorragia/tratamiento farmacológico , Hemorragia/metabolismo , Hemorragia/cirugía , Óxido Nítrico/metabolismo , Oxígeno/sangre , Presión Parcial , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/metabolismo , Edema Pulmonar/cirugía , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Cloruro de Sodio , Ácido Úrico/sangreRESUMEN
BACKGROUND: Hyperhidrosis (HH) is a disease whose physiopathology remains poorly understood and that adversely affects quality of life. There is no morphologic study that includes an adequate control group that allows for comparison of the ganglion of HH to those of normal individuals. The purpose of study was to analyze morphologic and morphometric characteristics of the ganglion from patients with HH and normal individuals (organ donators). METHODS: This was a transversal study. The sympathetic thoracic ganglia were obtained from 2 groups of patients. Group PH (palmar hyperhidrosis), 40 patients with palmar HH submitted to surgery by video-assisted thoracoscopy, and group C (control group), 14 deceased individuals (control group of organ donators) without any history of HH. The third left sympathetic thoracic ganglion was resected in all patients. RESULTS: We observed higher number of cells in the PH group than in the control group (14.25 + 3.81 vs. 10.65 + 4.93) with P = 0.007; the mean percentage of ganglion cells stained by caspases-3 in the PH group was significantly greater than that of the C group (2.37 + 0.79 vs. 0.77 + 0.28) with P < 0.001; the mean value of area of collagen in the PH group was 0.80 IQ (0.08-1.87), and in the control group it was 2.36 IQ (0.49-5.98) with P = 0.061. CONCLUSIONS: Subjects with primary palmar HH have a higher number of ganglion cells within the ganglion and a higher number of cells in apoptosis. Also, the subjects of PH group have less collagen in the sympathetic ganglion when compared with the control group, but not statistically significant.
Asunto(s)
Ganglios Simpáticos/patología , Hiperhidrosis/patología , Nervios Torácicos/patología , Adolescente , Adulto , Anciano , Apoptosis , Estudios de Casos y Controles , Niño , Colágeno/análisis , Estudios Transversales , Femenino , Ganglios Simpáticos/química , Ganglios Simpáticos/cirugía , Humanos , Hiperhidrosis/metabolismo , Hiperhidrosis/cirugía , Masculino , Persona de Mediana Edad , Simpatectomía/métodos , Nervios Torácicos/química , Nervios Torácicos/cirugía , Cirugía Torácica Asistida por Video , Adulto JovenRESUMEN
BACKGROUND: Immune profiling has become an important tool for identifying predictive, prognostic and response biomarkers for immune checkpoint inhibitors from tumor microenvironment (TME). We aimed to build a multiplex immunofluorescence (mIF) panel to apply to formalin-fixed and paraffin-embedded tissues in mice tumors and to explore the programmed cell death protein 1/ programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. RESULTS: An automated eight-color mIF panel was evaluated to study the TME using seven antibodies, including cytokeratin 19, CD3e, CD8a, CD4, PD-1, PD-L1, F4-80 and DAPI, then was applied in six mice lung adenocarcinoma samples. Cell phenotypes were quantified by software to explore the co-localization and spatial distribution between immune cells within the TME. This mice panel was successfully optimized and applied to a small cohort of mice lung adenocarcinoma cases. Image analysis showed a sparse degree of immune cell expression pattern in this cohort. From the spatial analysis we found that T cells and macrophages expressing PD-L1 were close to the malignant cells and other immune cells. CONCLUSIONS: Comprehensive immune profiling using mIF in translational studies improves our ability to correlate the PD-1/PD-L1 axis and spatial distribution of lymphocytes and macrophages in mouse lung cancer cells to provide new cues for immunotherapy, that can be translated to human tumors for cancer intervention.