Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(5): 685-692, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639898

RESUMEN

The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.


Asunto(s)
Depresión de Propagación Cortical , Potasio , Masculino , Femenino , Ratones , Animales , Potasio/metabolismo , Halorrodopsinas/farmacología , Cloruros/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Depresión de Propagación Cortical/fisiología
2.
Neurobiol Dis ; 200: 106638, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142613

RESUMEN

Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal, SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65, TLR4, and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.


Asunto(s)
5-Metilcitosina , Metilación de ADN , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Hipocampo , Animales , Hipocampo/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Masculino , Humanos , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/genética , Ratas , Ratas Sprague-Dawley , Femenino , Epigénesis Genética , Adulto , Ácido Kaínico
3.
Brain ; 146(7): 2814-2827, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572952

RESUMEN

Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.


Asunto(s)
Epilepsia , Optogenética , Ratones , Animales , Convulsiones , Encéfalo , Células Piramidales/fisiología , Potenciales de Acción/fisiología
4.
Phys Chem Chem Phys ; 26(26): 17991-17998, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38764355

RESUMEN

The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.

5.
J Neurophysiol ; 127(1): 86-98, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34788174

RESUMEN

The transcriptional coactivator, PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), plays a key role in coordinating energy requirement within cells. Its importance is reflected in the growing number of psychiatric and neurological conditions that have been associated with reduced PGC-1α levels. In cortical networks, PGC-1α is required for the induction of parvalbumin (PV) expression in interneurons, and PGC-1α deficiency affects synchronous GABAergic release. It is unknown, however, how this affects cortical excitability. We show here that knocking down PGC-1α specifically in the PV-expressing cells (PGC-1αPV-/-) blocks the activity-dependent regulation of the synaptic proteins, SYT2 and CPLX1. More surprisingly, this cell class-specific knockout of PGC-1α appears to have a novel antiepileptic effect, as assayed in brain slices bathed in 0 Mg2+ media. The rate of occurrence of preictal discharges developed approximately equivalently in wild-type and PGC-1αPV-/- brain slices, but the intensity of these discharges was lower in PGC-1αPV-/- slices, as evident from the reduced power in the γ range and reduced firing rates in both PV interneurons and pyramidal cells during these discharges. Reflecting this reduced intensity in the preictal discharges, the PGC-1αPV-/- brain slices experienced many more discharges before transitioning into a seizure-like event. Consequently, there was a large increase in the latency to the first seizure-like event in brain slices lacking PGC-1α in PV interneurons. We conclude that knocking down PGC-1α limits the range of PV interneuron firing and this slows the pathophysiological escalation during ictogenesis.NEW & NOTEWORTHY Parvalbumin expressing interneurons are considered to play an important role in regulating cortical activity. We were surprised, therefore, to find that knocking down the transcriptional coactivator, PGC-1α, specifically in this class of interneurons appears to slow ictogenesis. This anti-ictogenic effect is associated with reduced activity in preictal discharges, but with a far longer period of these discharges before the first seizure-like events finally start. Thus, PGC-1α knockdown may promote schizophrenia while reducing epileptic tendencies.


Asunto(s)
Excitabilidad Cortical/fisiología , Interneuronas/metabolismo , Neocórtex/metabolismo , Parvalbúminas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Células Piramidales/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia
6.
Brain ; 142(11): 3482-3501, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553050

RESUMEN

Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Benzodiazepinas/uso terapéutico , Epilepsia Refractaria/fisiopatología , Aminoácidos Excitadores , Transducción de Señal , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/fisiopatología , Ácido gamma-Aminobutírico , Animales , Preescolar , Diazepam , Resistencia a Medicamentos , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Fenobarbital/farmacología , Ratas , Ratas Wistar , Receptores de GABA-A/efectos de los fármacos
7.
J Physiol ; 597(7): 2079-2096, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30681139

RESUMEN

KEY POINTS: Local neocortical and hippocampal territories show different and sterotypical patterns of acutely evolving, epileptiform activity. Neocortical and entorhinal networks show tonic-clonic-like events, but the main hippocampal territories do not, unless it is relayed from the other areas. Transitions in the pattern of locally recorded epileptiform activity can be indicative of a shift in the source of pathological activity, and may spread through both synaptic and non-synaptic means. Hippocampal epileptiform activity is promoted by 4-aminopyridine and inhibited by GABAB receptor agonists, and appears far more sensitive to these drugs than neocortical activity. These signature features of local epileptiform activity can provide useful insight into the primary source of ictal activity, aiding both experimental and clinical investigation. ABSTRACT: Understanding the nature of epileptic state transitions remains a major goal for epilepsy research. Simple in vitro models offer unique experimental opportunities that we exploit to show that such transitions can arise from shifts in the ictal source of the activity. These transitions reflect the fact that cortical territories differ both in the type of epileptiform activity they can sustain and in their susceptibility to drug manipulation. In the zero-Mg2+ model, the earliest epileptiform activity is restricted to neocortical and entorhinal networks. Hippocampal bursting only starts much later, and triggers a marked transition in neo-/entorhinal cortical activity. Thereafter, the hippocampal activity acts as a pacemaker, entraining the other territories to their discharge pattern. This entrainment persists following transection of the major axonal pathways between hippocampus and cortex, indicating that it can be mediated through a non-synaptic route. Neuronal discharges are associated with large rises in extracellular [K+ ], but we show that these are very localized, and therefore are not the means of entraining distant cortical areas. We conclude instead that the entrainment occurs through weak field effects distant from the pacemaker, but which are highly effective at recruiting other brain territories that are already hyperexcitable. The hippocampal epileptiform activity appears unusually susceptible to drugs that impact on K+ conductances. These findings demonstrate that the local circuitry gives rise to stereotypical epileptic activity patterns, but these are also influenced by both synaptic and non-synaptic long-range effects. Our results have important implications for our understanding of epileptic propagation and anti-epileptic drug action.


Asunto(s)
4-Aminopiridina/farmacología , Epilepsia , Hipocampo/efectos de los fármacos , Neocórtex/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Femenino , Masculino , Ratones , Vías Nerviosas , Neuronas/fisiología
8.
J Physiol ; 597(8): 2297-2314, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30784081

RESUMEN

KEY POINTS: There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin- and somatostatin-expressing interneurons. Interneuronal bursting is time-locked to glutamatergic barrages in the pre-ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates. ABSTRACT: Previous work has described powerful restraints on laterally spreading activity in cortical networks, arising from a rapid feedforward interneuronal response to focal activity. This response is particularly prominent ahead of an ictal wavefront. Parvalbumin-positive interneurons are considered to be critically involved in this feedforward inhibition, but it is not known what role, if any, is provided by somatostatin-expressing interneurons, which target the distal dendrites of pyramidal cells. We used a combination of electrophysiology and cell class-specific Ca2+ imaging in mouse brain slices bathed in 0 Mg2+ medium to characterize the activity profiles of pyramidal cells and parvalbumin- and somatostatin-expressing interneurons during epileptiform activation. The GCaMP6f signal strongly correlates with the level of activity for both interneuronal classes. Both interneuronal classes participate in the feedfoward inhibition. This contrasts starkly with the pattern of pyramidal recruitment, which is greatly delayed. During these barrages, both sets of interneurons show intense bursting, at rates up to 300Hz, which is time-locked to the glutamatergic barrages. The activity of parvalbumin-expressing interneurons appears to peak early in the pre-ictal period, and can display depolarizing block during the ictal event. In contrast, somatostatin-expressing interneuronal activity peaks significantly later, and firing persists throughout the ictal events. Interictal events appear to be very similar to the pre-ictal period, albeit with slightly lower firing rates. Thus, the inhibitory restraint arises from a coordinated pattern of activity in the two main classes of cortical interneurons.


Asunto(s)
Interneuronas/fisiología , Parvalbúminas/fisiología , Somatostatina/fisiología , Animales , Encéfalo/fisiología , Femenino , Masculino , Ratones Transgénicos
9.
Neurobiol Dis ; 127: 303-311, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30898669

RESUMEN

The cellular activity underlying human focal seizures, and its relationship to key signatures in the EEG recordings used for therapeutic purposes, has not been well characterized despite many years of investigation both in laboratory and clinical settings. The increasing use of microelectrodes in epilepsy surgery patients has made it possible to apply principles derived from laboratory research to the problem of mapping the spatiotemporal structure of human focal seizures, and characterizing the corresponding EEG signatures. In this review, we describe results from human microelectrode studies, discuss some data interpretation pitfalls, and explain the current understanding of the key mechanisms of ictogenesis and seizure spread.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Electrodos Implantados , Electroencefalografía , Humanos , Microelectrodos
10.
Neurobiol Dis ; 124: 531-543, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30625365

RESUMEN

Temporal Lobe Epilepsy (TLE) is frequently associated with changes in protein composition and post-translational modifications (PTM) that exacerbate the disorder. O-linked-ß-N-acetyl glucosamine (O-GlcNAc) is a PTM occurring at serine/threonine residues that is derived from and closely associated with metabolic substrates. The enzymes O-GlcNActransferase (OGT) and O-GlcNAcase (OGA) mediate the addition and removal, respectively, of the O-GlcNAc modification. The goal of this study was to characterize OGT/OGA and protein O-GlcNAcylation in the epileptic hippocampus and to determine and whether direct manipulation of these proteins and PTM's alter epileptiform activity. We observed reduced global and protein specific O-GlcNAcylation and OGT expression in the kainate rat model of TLE and in human TLE hippocampal tissue. Inhibiting OGA with Thiamet-G elevated protein O-GlcNAcylation, and decreased both seizure duration and epileptic spike events, suggesting that OGA may be a therapeutic target for seizure control. These findings suggest that loss of O-GlcNAc homeostasis in the kainate model and in human TLE can be reversed via targeting of O-GlcNAc related pathways.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Glucosamina/metabolismo , Hipocampo/metabolismo , Homeostasis/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Animales , Histona Acetiltransferasas/metabolismo , Humanos , Masculino , N-Acetilglucosaminiltransferasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA