Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882771

RESUMEN

During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.


Asunto(s)
Proteínas de Drosophila , Meiosis , Animales , Masculino , Meiosis/genética , Espermatogénesis/fisiología , Profase , Mitosis , Espermatocitos/metabolismo , Drosophila/genética , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo
2.
Lab Invest ; 93(5): 528-42, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23459371

RESUMEN

For many cancers, there is a real need for more effective therapies. Although many drugs show promising results in vitro, most fail to translate into an in vivo model system, and only ∼5% show anti-tumor activity in clinical trials. It remains a significant challenge to accurately replicate in vitro the complex in vivo microenvironment in which cancers thrive, but this will be key to increasing the success of translating novel therapies into clinical practice. Three-dimensional (3D) cell culture models may better mimic primary tumors in vivo than traditional two-dimensional (2D) cultures. Therefore, we established and characterized 3D in vitro models of 31 epithelial ovarian cancer (EOC) cell lines, compared their biological and molecular features with 2D cultures and primary tumors, and tested their efficacy as models for evaluating chemoresponse. When cultured in 3D using polyhydroxoethylamethacrylate-coated plastics, EOC lines formed multicellular aggregates that could be classified as 'large dense', 'large loose', and 'small', based on size, light permeability, and proportion of cells incorporated into the complex structures. Features of histological differentiation characteristic of primary tumors that were not present in 2D cultures were restored in 3D. For many cell lines, the transition from a 2D to 3D microenvironment induced changes in the expression of several biomarkers relevant to disease. Generally, EOC cell lines proliferated more slowly and were more chemoresistant in 3D compared with 2D culture. In summary, 3D models of EOCs better reflect the histological, biological, and molecular features of primary tumors than the same cells cultured using traditional 2D techniques; 3D in vitro models also exhibit different sensitivities to chemotherapeutic agents compared with 2D models, which may have a significant impact on the success of drug testing pipelines for EOC. These findings could also impact in vitro modeling approaches and drug development strategies for other solid tumor types.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Microambiente Tumoral , Análisis de Varianza , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Adhesión Celular , Técnicas de Cultivo de Célula/instrumentación , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Resistencia a Antineoplásicos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Histocitoquímica , Humanos , Ratones , Neoplasias Ováricas/metabolismo , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto
3.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824933

RESUMEN

During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes turn up expression of over 3000 genes and grow 25-fold in volume. Previous work showed that the core cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature Drosophila spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here we show that another spermatocyte-specific protein, Lut, is required for translational repression of cycB in an 8-hour window just before spermatocytes are fully mature. In males mutant for rbp4 or lut , spermatocytes enter and exit the meiotic divisions 6-8 hours earlier than in wild-type. In addition, we show that spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein and normal entry into the meiotic divisions. Both Lut and Syp interact with Fest in an RNA-independent manner. Thus a complex of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase. SUMMARY STATEMENT: Expression of a conserved cell cycle component, Cyclin B, is regulated by multiple mechanisms in the Drosophila male germline to dictate the correct timing of meiotic division.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA