RESUMEN
The Twinkle space telescope has been designed for the characterisation of exoplanets and Solar System objects. Operating in a low Earth, Sun-synchronous orbit, Twinkle is equipped with a 45 cm telescope and visible (0.4 - 1 µm) and infrared (1.3 - 4.5 µm) spectrometers which can be operated simultaneously. Twinkle is a general observatory which will provide on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or accessible only to oversubscribed observatories in the short-term future. Here we explore the ability of Twinkle's spectrometers to characterise the currently-known exoplanets. We study the spectral resolution achievable by combining multiple observations for various planetary and stellar types. We also simulate spectral retrievals for some well-known planets (HD 209458 b, GJ 3470 b and 55 Cnc e). From the exoplanets known today, we find that with a single transit or eclipse, Twinkle could probe 89 planets at low spectral resolution (R < 20) as well as 12 planets at higher resolution (R > 20) in channel 1 (1.3 - 4.5 µm). With 10 observations, the atmospheres of 144 planets could be characterised with R <20 and 81 at higher resolutions. Upcoming surveys will reveal thousands of new exoplanets, many of which will be located within Twinkle's field of regard. TESS in particular is predicted to discover many targets around bright stars which will be suitable for follow-up observations. We include these anticipated planets and find that the number of planets Twinkle could observe in the near infrared in a single transit or eclipse increases R > 20. By stacking 10 transits, there are 1185 potential targets for study at R < 20 as well as 388 planets at higher resolutions. The majority of targets are found to be large gaseous planets although by stacking multiple observations smaller planets around bright stars (e.g. 55 Cnc e) could be observed with Twinkle. Photometry and low resolution spectroscopy with Twinkle will be useful to refine planetary, stellar and orbital parameters, monitor stellar activity through time and search for transit time and duration variations (TTVs and TDVs). Refinement of these parameters could be used to in the planning of observations with larger space-based observatories such as JWST and ARIEL. For planets orbiting very bright stars, Twinkle observations at higher spectral resolution will enable us to probe the chemical and thermal properties of an atmosphere. Simultaneous coverage across a wide wavelength range will reduce the degeneracies seen with Hubble and provide access to detections of a wide range molecules. There is the potential to revisit them many times over the mission lifetime to detect variations in cloud cover.
RESUMEN
Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1
RESUMEN
A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared (FIR) wavelengths (0.15-1 THz). It is planned to use this demonstrator to investigate and validate important design features and data-processing methods for future astronomical FIR interferometer instruments. In building this prototype, we have had to address several key technologies to provide an end-end system demonstration of this double-Fourier interferometer. We report on the first results taken when viewing single-slit and double-slit sources at the focus of a large collimator used to simulate real sources at infinity. The performance of the prototype instrument for these specific field geometries is analyzed to compare with the observed interferometric fringes and to demonstrate image reconstruction capabilities.
RESUMEN
We have developed a passive 350 GHz (850 µm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)--designed originally for far-infrared astronomy--as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of â¼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.
RESUMEN
An upgraded configuration of the SAFIRE-A Fourier transform far-infrared spectrometer was recently set up, and significant improvements in instrument performance were attained during several testing and scientific flights onboard the high-altitude research aircraft M55-Geophysica. New features were implemented in specific instrument subsystems, such as the pointing system, the reference laser interferometer, and the onboard calibration unit, to increase the overall instrument functionality and to obtain reliable operation from both the high-frequency (approximately 120 cm(-1)) and the low-frequency (approximately 23 cm(-1)) detection channels. Other changes, such as those made in the onboard recording system or in the postflight data-transfer procedure, were aimed at expanding the capability of unattended operation and at providing a user-friendly interface for data downloading and ground servicing. A detailed description of these modifications is given, along with a quantitative assessment of the SAFIRE-A instrument performance.
RESUMEN
The validation of atmospheric remote-sensing measurements involves the comparison of vertical profiles of atmospheric constituents obtained by different instruments. This operation is a complex one because it has to take into account the measurement errors that are described by the variance-covariance matrices and the different features of the two observing systems that are described by the averaging kernels. The procedure is discussed and a method of comparison that is rigorous and does not involve degradation of the available information is developed by use of the formalism of functional spaces. The functional spaces that can be used for representation of the two profiles are reviewed, and criteria are determined for the choice of the most convenient functional space to minimize degradation of the measurements. Once the functional spaces are chosen, the components of the profiles are compared in the intersection space of these two functional spaces. If the intersection space coincides with the null vector, a pseudointersection space with useful geometrical properties can be used instead. A test of the method is made with a realistic simulation. In the test the profiles retrieved by two real instruments are simulated and quantitatively compared.