Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Physiol ; 173(2): 1247-1257, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27999083

RESUMEN

Heterosis is the superior performance of F1 hybrids compared with their homozygous, genetically distinct parents. In this study, we monitored the transcriptomic divergence of the maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal F1 hybrid progeny in primary roots under control and water deficit conditions simulated by polyethylene glycol treatment. Single-parent expression (SPE) of genes is an extreme instance of gene expression complementation, in which genes are active in only one of two parents but are expressed in both reciprocal hybrids. In this study, 1,997 genes only expressed in B73 and 2,024 genes only expressed in Mo17 displayed SPE complementation under control and water deficit conditions. As a consequence, the number of active genes in hybrids exceeded the number of active genes in the parental inbred lines significantly independent of treatment. SPE patterns were substantially more stable to expression changes by water deficit treatment than other genotype-specific expression profiles. While, on average, 75% of all SPE patterns were not altered in response to polyethylene glycol treatment, only 17% of the remaining genotype-specific expression patterns were not changed by water deficit. Nonsyntenic genes that lack syntenic orthologs in other grass species, and thus evolved late in the grass lineage, were significantly overrepresented among SPE genes. Hence, the significant overrepresentation of nonsyntenic genes among SPE patterns and their stability under water limitation might suggest a function of these genes during the early developmental manifestation of heterosis under fluctuating environmental conditions in hybrid progeny of the inbred lines B73 and Mo17.


Asunto(s)
Deshidratación/genética , Regulación de la Expresión Génica de las Plantas , Zea mays/fisiología , Quimera , Prueba de Complementación Genética , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Zea mays/genética
2.
Plant Physiol ; 171(2): 1144-55, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208302

RESUMEN

Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids.


Asunto(s)
Alelos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hibridación Genética , Especificidad de Órganos/genética , Sintenía/genética , Zea mays/genética , Perfilación de la Expresión Génica , Genotipo , Endogamia , Raíces de Plantas/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
3.
Plant Cell ; 26(10): 3939-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25315323

RESUMEN

Maize (Zea mays) displays an exceptional level of structural genomic diversity, which is likely unique among higher eukaryotes. In this study, we surveyed how the genetic divergence of two maize inbred lines affects the transcriptomic landscape in four different primary root tissues of their F1-hybrid progeny. An extreme instance of complementation was frequently observed: genes that were expressed in only one parent but in both reciprocal hybrids. This single-parent expression (SPE) pattern was detected for 2341 genes with up to 1287 SPE patterns per tissue. As a consequence, the number of active genes in hybrids exceeded that of their parents in each tissue by >400. SPE patterns are highly dynamic, as illustrated by their excessive degree of tissue specificity (80%). The biological significance of this type of complementation is underpinned by the observation that a disproportionally high number of SPE genes (75 to 82%) is nonsyntenic, as opposed to all expressed genes (36%). These genes likely evolved after the last whole-genome duplication and are therefore younger than the syntenic genes. In summary, SPE genes shape the remarkable gene expression plasticity between root tissues and complementation in maize hybrids, resulting in a tissue-specific increase of active genes in F1-hybrids compared with their inbred parents.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Vigor Híbrido/genética , Zea mays/genética , Perfilación de la Expresión Génica , Ontología de Genes , Genotipo , Hibridación Genética , Cadenas de Markov , Método de Montecarlo , Raíces de Plantas/genética
4.
Plant Physiol ; 168(1): 233-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25780097

RESUMEN

A high-resolution proteome and phosphoproteome atlas of four maize (Zea mays) primary root tissues, the cortex, stele, meristematic zone, and elongation zone, was generated. High-performance liquid chromatography coupled with tandem mass spectrometry identified 11,552 distinct nonmodified and 2,852 phosphorylated proteins across the four root tissues. Two gradients reflecting the abundance of functional protein classes along the longitudinal root axis were observed. While the classes RNA, DNA, and protein peaked in the meristematic zone, cell wall, lipid metabolism, stress, transport, and secondary metabolism culminated in the differentiation zone. Functional specialization of tissues is underscored by six of 10 cortex-specific proteins involved in flavonoid biosynthesis. Comparison of this data set with high-resolution seed and leaf proteome studies revealed 13% (1,504/11,552) root-specific proteins. While only 23% of the 1,504 root-specific proteins accumulated in all four root tissues, 61% of all 11,552 identified proteins accumulated in all four root tissues. This suggests a much higher degree of tissue-specific functionalization of root-specific proteins. In summary, these data illustrate the remarkable plasticity of the proteomic landscape of maize primary roots and thus provide a starting point for gaining a better understanding of their tissue-specific functions.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Zea mays/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Meristema/metabolismo , Anotación de Secuencia Molecular , Especificidad de Órganos , Fosforilación , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/metabolismo , Regulación hacia Arriba , Zea mays/genética
5.
J Exp Bot ; 67(4): 1123-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26628518

RESUMEN

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.


Asunto(s)
ARN de Planta/genética , Transcriptoma , Zea mays/anatomía & histología , Zea mays/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
6.
J Exp Bot ; 67(4): 1095-107, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26463995

RESUMEN

Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars.


Asunto(s)
Sequías , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Transcriptoma , Agua/metabolismo , Zea mays/fisiología , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Análisis de Secuencia de ARN , Zea mays/genética
7.
Plant J ; 79(5): 729-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24902980

RESUMEN

Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno/metabolismo , Zea mays/enzimología , Alelos , Secuencia de Aminoácidos , Diferenciación Celular , Mapeo Cromosómico , Regulación Enzimológica de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , NADPH Oxidasas/metabolismo , Especificidad de Órganos , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Alineación de Secuencia , Análisis de Secuencia de ARN , Superóxidos/metabolismo , Zea mays/citología , Zea mays/genética , Zea mays/crecimiento & desarrollo
8.
Genome Res ; 22(12): 2445-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086286

RESUMEN

Typically, F(1)-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%-55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hibridación Genética , Proteínas de Plantas/genética , Transcriptoma , Zea mays/genética , Alelos , Mapeo Cromosómico , Genotipo , Endogamia , Fenotipo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , ARN de Planta/genética , Análisis de Secuencia de ARN
9.
BMC Genomics ; 15: 741, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25174417

RESUMEN

BACKGROUND: Widespread and more frequently occurring drought conditions are a consequence of global warming and increase the demand for tolerant crop varieties to feed the growing world population. A better understanding of the molecular mechanisms underlying the water deficit response of crops will enable targeted breeding strategies to develop robust cultivars. RESULTS: In the present study, the transcriptional response of maize (Zea mays L.) primary roots to low water potentials was monitored by RNA sequencing (RNA-Seq) experiments. After 6 h and 24 h of mild (-0.2 MPa) and severe (-0.8 MPa) water deficit conditions, the primary root transcriptomes of seedlings grown under water deficit and control conditions were compared. The number of responsive genes was dependent on and increased with intensification of water deficit treatment. After short-term mild and severe water deficit 249 and 3,000 genes were differentially expressed, respectively. After a 24 h treatment the number of affected genes increased to 7,267 and 12,838 for mild and severe water deficit, respectively, including more than 80% of the short-term responsive genes. About half of the differentially expressed genes were up-regulated and maximal fold-changes increased with treatment intensity to more than 300-fold. A consensus set of 53 genes was differentially regulated independently of the nature of deficit treatment. Characterization revealed an overrepresentation of the Gene Ontology (GO) categories "oxidoreductase activity" and "heme binding" among regulated genes connecting the water deficit response to ROS metabolism. CONCLUSION: This study gives a comprehensive insight in water deficit responsive genes in young maize primary roots and provides a set of candidate genes that merit further genetic analyses in the future.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Plantas , Zea mays/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Raíces de Plantas/genética , Análisis de Secuencia de ARN , Estrés Fisiológico , Zea mays/fisiología
10.
Plant Physiol ; 163(1): 419-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23843603

RESUMEN

Maize (Zea mays) develops an extensive shoot-borne root system to secure water and nutrient uptake and to provide anchorage in the soil. In this study, early coleoptilar node (first shoot node) development was subjected to a detailed morphological and histological analysis. Subsequently, microarray profiling via hybridization of oligonucleotide microarrays representing transcripts of 31,355 unique maize genes at three early stages of coleoptilar node development was performed. These pairwise comparisons of wild-type versus mutant rootless concerning crown and seminal roots (rtcs) coleoptilar nodes that do not initiate shoot-borne roots revealed 828 unique transcripts that displayed RTCS-dependent expression. A stage-specific functional analysis revealed overrepresentation of "cell wall," "stress," and "development"-related transcripts among the differentially expressed genes. Differential expression of a subset of 15 of 828 genes identified by these microarray experiments was independently confirmed by quantitative real-time-polymerase chain reaction. In silico promoter analyses revealed that 100 differentially expressed genes contained at least one LATERAL ORGAN BOUNDARIES domain (LBD) motif within 1 kb upstream of the ATG start codon. Electrophoretic mobility shift assay experiments demonstrated RTCS binding for four of these promoter sequences, supporting the notion that differentially accumulated genes containing LBD motifs are likely direct downstream targets of RTCS.


Asunto(s)
Transcriptoma , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo
11.
J Exp Bot ; 65(17): 4919-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928984

RESUMEN

The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Xilema/genética , Xilema/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
13.
Theor Appl Genet ; 120(2): 383-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19526205

RESUMEN

Heterosis is of paramount agronomic importance and has been successfully exploited in maize hybrid breeding for decades. Nevertheless, the molecular basis of heterosis remains elusive. Heterosis is not only observed in adult traits like yield or plant height, but is already detected during embryo and seedling development. Hence, the maize (Zea mays L.) primary root which is the first organ that emerges after germination is a suitable model to study heterosis manifestation. Various seedling root traits including primary root length and lateral root density display heterosis. Microarray studies suggest organ specific patterns of nonadditive gene expression in maize hybrids. Moreover, such experiments support the notion that global expression trends in maize primary roots are conserved between different hybrids. Furthermore, nonadditive expression patterns of specific genes such as a SUPEROXIDE DISMUTASE 2 might contribute to the early manifestation of heterosis. Proteome profiling experiments of maize hybrid primary roots revealed nonadditive accumulation patterns that were distinct from the corresponding RNA profiles underscoring the importance of posttranscriptional processes such as protein modifications that might be related to heterosis. Finally, analysis of selected metabolites imply that a subtle regulation of particular biochemical pathways such as the phenylpropanoid pathway in hybrids might contribute to the manifestation of heterosis in maize primary roots. In the future, recently developed molecular tools will facilitate the analysis of the molecular principles underlying heterosis in maize roots.


Asunto(s)
Vigor Híbrido/genética , Zea mays/genética , Perfilación de la Expresión Génica , Hibridación Genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteoma , Zea mays/crecimiento & desarrollo
14.
Proteomics ; 8(18): 3882-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18704907

RESUMEN

Heterosis describes the superior performance of heterozygous F(1)-hybrids compared to their homozygous parental inbred lines. Heterosis is already manifested during early maize (Zea mays L.) primary root development. In this study, the most abundant soluble proteins have been investigated before the phenotypic manifestation of heterosis in 3.5-day-old primary roots in the flint inbred line UH002, the dent inbred line UH301 and the corresponding hybrid UH301 x UH002. In CBB-stained 2-DE gels, 150 of 304 detected proteins (49%) were accumulated in a nonadditive fashion in the hybrid compared to the average of their parental inbred lines (Student's t-test: p < 0.05). Remarkably, expression of 51% (76/150) of the nonadditively accumulated proteins exceeded the high parent or was below the low parent. ESI-MS/MS identified 75 of the 76 proteins that belonged to these expression classes. The most abundant functional classes among the 75 proteins that were encoded by 60 different genes were metabolism (58%) and disease and defense (19%). Nonadditive protein accumulation in primary roots of maize hybrids might be associated with heterosis manifestation. Identification of these proteins could therefore contribute to the better understanding of the molecular basis of heterosis.


Asunto(s)
Proteínas de Plantas/análisis , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Zea mays/metabolismo , Vigor Híbrido , Plantas Modificadas Genéticamente/genética , Proteómica , Espectrometría de Masas en Tándem/métodos , Zea mays/genética
15.
Plant Cell Physiol ; 49(8): 1165-75, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18559356

RESUMEN

CORONATINE INSENSITIVE 1 (COI1) is a well-known key player in processes downstream of jasmonic acid (JA) biosynthesis: silencing COI1 in Nicotiana attenuata (ir-coi1) makes plants insensitive to JA, prevents the up-regulation of JA-mediated defenses and decreases the plant's resistance to herbivores and pathogens. In agreement with previous studies, we observed that regulation of several JA biosynthesis genes elicited by Manduca sexta oral secretions (OS) is COI1 dependent. In response to wounding and application of OS ir-coi1 plants accumulate 75% less JA compared with wild-type plants (WT), resembling JA levels found in plants silenced in the key enzyme in JA biosynthesis LIPOXYGENASE 3 (as-lox). However, while OS-elicited as-lox plants also accumulated lower levels of the JA-conjugate JA-isoleucine (JA-Ile) than did WT plants, JA-Ile accumulation in ir-coi1 was higher, prolonged and peaked with a delay of 30 min. In vivo substrate feeding experiments of N. attenuata demonstrate that the increased and prolonged JA-Ile accumulation pattern in ir-coi1 is not the result of altered substrate availability, i.e. of JA and/or Ile, but is due to an approximately 6-fold decrease in JA-Ile turnover. These results provide the first evidence for a second, novel regulatory feedback function of COI1 in enhancing JA-Ile turnover. Hence, in addition to its control over JA biosynthesis, COI1 might fine-tune the dynamics of the jasmonate response after induction by herbivore elicitors.


Asunto(s)
Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Isoleucina/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Factores de Tiempo
16.
Sci Rep ; 6: 34395, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708345

RESUMEN

Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis.


Asunto(s)
Glucosiltransferasas , Meristema , Proteínas de Plantas , Zea mays , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Meristema/enzimología , Meristema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/enzimología , Zea mays/genética
17.
Methods Mol Biol ; 959: 69-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299668

RESUMEN

Monocot cereals develop a complex root system comprising embryonic roots at an early seedling stage and postembryonic roots which make up the fibrous root system of adult crops. In the model cereals maize, rice, and barley a number of mutants affecting root development have been identified in the past and a subset of the affected genes have been recently cloned and functionally characterized. The present review summarizes genetic and molecular data of cereal root mutants impaired in the elongation or initiation of embryonic and postembryonic roots and the elongation of root hairs for which the affected genes have been recently cloned.


Asunto(s)
Grano Comestible/fisiología , Organogénesis/fisiología , Raíces de Plantas/fisiología , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis/genética , Raíces de Plantas/genética
18.
Plant J ; 51(1): 79-91, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17561925

RESUMEN

Arabidopsis and tomato plants mutated in the F-box protein COI1 mediating jasmonate (JA) responses are more susceptible to herbivores in laboratory trials, but the exact mechanisms of COI1-mediated resistance are not known. We silenced COI1 by transformation with an inverted repeat construct (ir-coi1) in Nicotiana attenuata, a plant the direct and indirect defenses of which against various herbivores have been well studied. ir-coi1 plants are male sterile and impaired in JA-elicited direct [nicotine, caffeoylputrescine and trypsin proteinase inhibitor (TPI) activity] and indirect (cis-alpha-bergamotene emission) defense responses; responses not elicited by JA treatment (ethylene production and flower TPI activity) were unaffected. Larvae of Manduca sexta, a common herbivore of N. attenuata, gained three times more mass feeding on ir-coi1 than on wild-type (WT) plants in glasshouse experiments. By regularly moving caterpillars to unattacked leaves of the same plant, we demonstrate that larvae on WT plants can grow and consume leaves as fast as those on ir-coi1 plants, a result that underscores the role of COI1 in mediating locally induced resistance in attacked leaves, and the importance of herbivore movement in avoiding the induced defenses of a plant. When transplanted into native habitats in the Great Basin Desert, ir-coi1 plants suffer greatly from damage by the local herbivore community, which includes herbivores not commonly found on N. attenuata WT plants. Choice assays with field-grown plants confirmed the increased attractiveness of ir-coi1 plants for both common and unusual herbivores. We conclude that NaCOI1 is essential for induced resistance in N. attenuata, and that ir-coi1 plants highlight the benefits of herbivore movement for avoiding induced defenses.


Asunto(s)
Ecosistema , Locomoción/fisiología , Mariposas Nocturnas/fisiología , Proteínas de Plantas/genética , Solanaceae/genética , Animales , Proteínas de Arabidopsis , Ciclopentanos/metabolismo , Larva/fisiología , Oxilipinas , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Solanaceae/metabolismo
19.
Plant J ; 45(2): 275-91, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367970

RESUMEN

When attacked by herbivores, plants release volatile organic compounds (VOCs) that attract natural enemies of the herbivores and function as indirect defenses. Whether or not neighboring plants 'eavesdrop' on these VOCs remains controversial because most studies use unrealistic experimental conditions and VOC exposures. In order to manipulate exposures of wild-type (WT) Nicotiana attenuata'receiver' plants, we elicited transformed 'emitter' plants, whose production of herbivore-induced C6 green leaf volatiles (GLVs) or terpenoid volatiles was genetically silenced, and placed them up-wind of WT 'receiver' plants in open-flow experimental chambers. We compared the transcriptional and secondary metabolite defense responses of WT receiver plants exposed to VOCs from these transgenic emitter plants with those of plants exposed to VOCs from WT emitter plants. No differences in the constitutive accumulation of defense metabolites and the signal molecule jasmonic acid (JA) were found. Additional elicitation of receiver plants revealed that exposure to WT, GLV-deficient and terpenoid-deficient volatile blends did not prime induced defenses, JA accumulation, or the expression of lipoxygenase 3 (NaLOX3), a gene involved in JA biosynthesis. However, exposure to wound- and herbivore-induced VOCs significantly altered the transcriptional patterns in receiver plants. We identified GLV-dependent genes by complementing the GLV-deficient volatile blend with a mixture of synthetic GLVs. Blends deficient in GLVs or cis-alpha-bergamotene regulated numerous genes in receiver plants that did not respond to the complete VOC blends of WT emitters, indicating a suppressive effect of GLVs and terpenoids. Whether these transcriptional responses translate into changes in plant fitness in nature remains to be determined.


Asunto(s)
Nicotiana/fisiología , Transducción de Señal , Compuestos Orgánicos/farmacología , Nicotiana/genética , Transcripción Genética , Volatilización
20.
Science ; 311(5762): 812-5, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16469918

RESUMEN

Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.


Asunto(s)
Adaptación Fisiológica , Compuestos Orgánicos/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Difusión , Regulación de la Expresión Génica de las Plantas , Genómica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/metabolismo , Plantas/metabolismo , Transducción de Señal , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA