RESUMEN
Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.
Asunto(s)
Metaboloma , Metabolómica , Personal Militar , Humanos , Metabolómica/métodos , Masculino , Adulto Joven , Estrés Fisiológico/fisiología , Adulto , Ejercicio Físico/fisiología , Carnitina/análogos & derivados , Carnitina/sangreRESUMEN
Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased (P < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged (P = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased (P < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased (P < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased (P < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores.NEW & NOTEWORTHY Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.
Asunto(s)
Volumen de Eritrocitos , Eritropoyetina , Homeostasis , Hierro , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hierro/metabolismo , Volumen de Eritrocitos/efectos de los fármacos , Adulto Joven , Adulto , Volumen Plasmático/efectos de los fármacos , Volumen Sanguíneo/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/metabolismo , Ejercicio Físico/fisiología , Hepcidinas/metabolismo , Eritropoyesis/efectos de los fármacos , Ferritinas/metabolismo , Ferritinas/sangreRESUMEN
Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 VÌo2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.
Asunto(s)
Altitud , Estudios Cruzados , Ejercicio Físico , Glucosa , Hipoglucemiantes , Oxidación-Reducción , Pioglitazona , Humanos , Pioglitazona/administración & dosificación , Pioglitazona/farmacología , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Tasa de Depuración Metabólica , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/sangre , Insulina/metabolismoRESUMEN
Chronically adhering to high-fat ketogenic diets or consuming ketone monoester supplements elicits ketosis. Resulting changes in substrate metabolism appear to be drastically different between ketogenic diets and ketone supplements. Consuming a ketogenic diet increases fatty acid oxidation with concomitant decreases in endogenous carbohydrate oxidation. Increased fat oxidation eventually results in an accumulation of circulating ketone bodies, which are metabolites of fatty acids that serve as an alternative source of fuel. Conversely, consuming ketone monoester supplements rapidly increases circulating ketone body concentrations that typically exceed those achieved by adhering to ketogenic diets. Rapid increases in ketone body concentrations with ketone monoester supplementation elicit a negative feedback inhibition that reduces fatty acid mobilization during aerobic exercise. Supplement-derived ketosis appears to have minimal impact on sparing of muscle glycogen or minimizing of carbohydrate oxidation during aerobic exercise. This review will discuss the substrate metabolic and associated aerobic performance responses to ketogenic diets and ketone supplements.
Asunto(s)
Dieta Cetogénica , Cetosis , Humanos , Cetonas , Cuerpos Cetónicos/metabolismo , Ácidos Grasos , Carbohidratos , Suplementos Dietéticos , Ejercicio Físico/fisiologíaRESUMEN
INTRODUCTION: The metabolomic profiles of Soldiers entering the U.S. Special Forces Assessment and Selection course (SFAS) have not been evaluated. OBJECTIVES: To compare pre-SFAS blood metabolomes of Soldiers selected during SFAS versus those not selected, and explore the relationships between the metabolome, physical performance, and diet quality. METHODS: Fasted blood samples and food frequency questionnaires were collected from 761 Soldiers prior to entering SFAS to assess metabolomic profiles and diet quality, respectively. Physical performance was assessed throughout SFAS. RESULTS: Between-group differences (False Discovery Rate < 0.05) in 108 metabolites were detected. Selected candidates had higher levels of compounds within xenobiotic, pentose phosphate, and corticosteroid metabolic pathways, while non-selected candidates had higher levels of compounds potentially indicative of oxidative stress (i.e., sphingomyelins, acylcarnitines, glutathione, amino acids). Multiple compounds higher in non-selected versus selected candidates included: 1-carboxyethylphenylalanine; 4-hydroxy-nonenal-glutathione; α-hydroxyisocaproate; hexanoylcarnitine; sphingomyelin and were associated with lower diet quality and worse physical performance. CONCLUSION: Candidates selected during SFAS had higher pre-SFAS levels of circulating metabolites that were associated with resistance to oxidative stress, higher physical performance and higher diet quality. In contrast, non-selected candidates had higher levels of metabolites potentially indicating elevated oxidative stress. These findings indicate that Soldiers who were selected for continued Special Forces training enter the SFAS course with metabolites associated with healthier diets and better physical performance. Additionally, the non-selected candidates had higher levels of metabolites that may indicate elevated oxidative stress, which could result from poor nutrition, non-functional overreaching/overtraining, or incomplete recovery from previous physical activity.
Asunto(s)
Dieta , Personal Militar , Estrés Oxidativo , Acondicionamiento Físico Humano , Biomarcadores/metabolismo , Metabolómica , Humanos , Masculino , Adulto Joven , Adulto , Resiliencia Psicológica , Estados UnidosRESUMEN
PURPOSE OF REVIEW: Highlight contemporary evidence examining the effects of carbohydrate restriction on the intracellular regulation of muscle mass and anaerobic performance. RECENT FINDINGS: Low carbohydrate diets increase fat oxidation and decrease fat mass. Emerging evidence suggests that dietary carbohydrate restriction increases protein oxidation, thereby limiting essential amino acid availability necessary to stimulate optimal muscle protein synthesis and promote muscle recovery. Low carbohydrate feeding for 24âh increases branched-chain amino acid (BCAA) oxidation and reduces myogenic regulator factor transcription compared to mixed-macronutrient feeding. When carbohydrate restriction is maintained for 8 to 12âweeks, the alterations in anabolic signaling, protein synthesis, and myogenesis likely contribute to limited hypertrophic responses to resistance training. The blunted hypertrophic response to resistance training when carbohydrate availability is low does not affect muscle strength, whereas persistently low muscle glycogen does impair anaerobic output during high-intensity sprint and time to exhaustion tests. SUMMARY: Dietary carbohydrate restriction increases BCAA oxidation and impairs muscle hypertrophy and anaerobic performance, suggesting athletes who need to perform high-intensity exercise should consider avoiding dietary strategies that restrict carbohydrate.
Asunto(s)
Carbohidratos de la Dieta , Resistencia Física , Humanos , Resistencia Física/fisiología , Anaerobiosis , Carbohidratos de la Dieta/metabolismo , Dieta Baja en Carbohidratos , Aminoácidos de Cadena Ramificada/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismoRESUMEN
BACKGROUND: The lack of complete amino acid composition data in food composition databases has made determining population-wide amino acid intake difficult. OBJECTIVES: This cross-sectional study characterizes habitual intakes of each amino acid and adherence to dietary requirements for each essential amino acid (EAA) in the US population. METHODS: Food and Nutrient Database for Dietary Studies ingredient codes with missing amino acid composition data were matched to similar ingredients with available data so that amino acid composition could be determined for 100% of foods reported in the dietary intake assessment component of NHANES. Amino acid intakes during NHANES 2001-2018 (n = 72,831; ≥2 y) were calculated as relative (mg·kg of ideal body weight-1·d-1) intakes. Data from NHANES 2011-2018 were used to determine the percentage of population consuming less than that recommended by the DRIs for each EAA by age, sex, and race/ethnicity. RESULTS: Relative intakes of EAAs and NEAAs were greatest in those 2-3 y and lowest in older individuals (≥71 y or ≥80 y). In females aged 2-18 y, relative intakes of EAAs were lowest in non-Hispanic White (NHW; histidine, lysine, threonine, methionine, and cysteine) and non-Hispanic Black (NHB; valine, isoleucine, leucine, phenylalanine, tryptophan, and tyrosine) populations and highest in the Asian population. In females aged ≥19 y, relative intakes were lowest in NHW (lysine and methionine only) and NHB populations and highest in the Asian population. In males aged 2-18 y, relative intakes of EAAs were lowest in the NHB population and highest in the Asian population. In males ≥19 y, relative intakes were lowest in NHB and NHW (lysine only) populations and highest in the Hispanic population. Less than 1% of individuals aged ≥19 y did not meet the Estimated Average Requirements for each EAA. CONCLUSIONS: EAA intakes in the US population exceed recommended minimum population requirements. Future studies can use the method described here to quantify amino acid intake and examine relationships with health and disease.
Asunto(s)
Dieta , Lisina , Masculino , Femenino , Humanos , Estados Unidos , Anciano , Ingesta Diaria Recomendada , Encuestas Nutricionales , Estudios Transversales , Aminoácidos , Aminoácidos Esenciales , MetioninaRESUMEN
ABSTRACT: Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.
Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Atletas , Adaptación Fisiológica/fisiologíaRESUMEN
MicroRNAs (miRNAs) regulate molecular processes governing muscle metabolism. Physical activity and energy balance influence both muscle anabolism and substrate metabolism, but whether circulating and skeletal muscle miRNAs mediate those effects remains unknown. This study assessed the impact of sustained physical activity with participants in energy balance (BAL) or deficit (DEF) on circulating and skeletal muscle miRNAs. Using a randomized cross-over design, 10 recreational active healthy males (mean ± SD, 22 ± 5 years, 87 ± 11 kg) completed 72 h of high aerobic exercise-induced energy expenditures in BAL (689 ± 852 kcal/day) or DEF (-2047 ± 920 kcal/day). Blood and muscle samples were collected under rested/fasted conditions before (PRE) and immediately after 120 min load carriage exercise bout at the end (POST) of the 72 h. Trials were separated by 7 days. Circulating and skeletal muscle miRNAs were measured using microarray RT-qPCR. Independent of energy status, 36 circulating miRNAs decreased (P < 0.05), while 10 miRNAs increased and three miRNAs decreased in skeletal muscle (P < 0.05) at POST compared to PRE. Of these, miR-122-5p, miR-221-3p, miR-222-3p and miR-24-3p decreased in circulation and increased in skeletal muscle. Two circulating (miR-145-5p and miR-193a-5p) and four skeletal muscle (miR-21-5p, miR-372-3p, miR-34a-5p and miR-9-5p) miRNAs had time-by-treatment effects (P < 0.05). These data suggest that changes in miRNA profiles are more sensitive to increased physical activity compared to energy status, and that changes in circulating miRNAs in response to high levels of daily aerobic exercise are not reflective of changes in skeletal muscle miRNAs. KEY POINTS: Circulating and skeletal muscle miRNA profiles are more sensitive to high levels of aerobic exercise-induced energy expenditure compared to energy status. Changes in circulating miRNA in response to high levels of daily sustained aerobic exercise are not reflective of changes in skeletal muscle miRNA.
Asunto(s)
Ejercicio Físico , MicroARNs , Adulto , Estudios Cruzados , Metabolismo Energético , Ejercicio Físico/fisiología , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiología , Adulto JovenRESUMEN
Posttranscriptional regulation by microRNA (miRNA) facilitates exercise and diet-induced skeletal muscle adaptations. However, the impact of diet on miRNA expression during postexercise recovery remains unclear. The objective of this study was to examine the effects of consuming carbohydrate or a nutrient-free control on skeletal muscle miRNA expression during 3 h of recovery from aerobic exercise. Using a randomized, crossover design, seven men (means ± SD, age: 21 ± 3 yr; body mass: 83 ± 13 kg; VÌo2peak: 43 ± 2 mL/kg/min) completed two-cycle ergometry glycogen depletion trials followed by 3 h of recovery while consuming either carbohydrate (CHO: 1 g/kg/h) or control (CON: nutrient free). Muscle biopsy samples were obtained under resting fasted conditions at baseline and at the end of the 3-h recovery (REC) period. miRNA expression was determined using unbiased RT-qPCR microarray analysis. Trials were separated by 7 days. Twenty-five miRNAs were different (P < 0.05) between CHO and CON at REC, with Let7i-5p and miR-195-5p being the most predictive of treatment. In vitro overexpression of Let7i-5p and miR-195-p5 in C2C12 skeletal muscle cells decreased (P < 0.05) the expression of protein breakdown (Foxo1, Trim63, Casp3, and Atf4) genes, ubiquitylation, and protease enzyme activity compared with control. Energy sensing (Prkaa1 and Prkab1) and glycolysis (Gsy1 and Gsk3b) genes were lower (P < 0.05) with Let7i-5p overexpression compared with miR-195-5p and control. Fat metabolism (Cpt1a, Scd1, and Hadha) genes were lower (P < 0.05) in miR-195-5p than in control. These data indicate that consuming CHO after aerobic exercise alters miRNA profiles compared with CON, and these differences may govern mechanisms facilitating muscle recovery.NEW & NOTEWORTHY Results provide novel insight into effects of carbohydrate intake on the expression of skeletal muscle microRNA during early recovery from aerobic exercise and reveal that Let7i-5p and miR-195-5p are important regulators of skeletal muscle protein breakdown to aid in facilitating muscle recovery.
Asunto(s)
Glucógeno , MicroARNs , Adolescente , Adulto , Humanos , Masculino , Adulto Joven , Carbohidratos de la Dieta/farmacología , Carbohidratos de la Dieta/metabolismo , Ejercicio Físico/fisiología , Glucógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismoRESUMEN
INTRODUCTION: Testosterone administration attenuates reductions in total body mass and lean mass during severe energy deficit (SED). OBJECTIVES: This study examined the effects of testosterone administration on the serum metabolome during SED. METHODS: In a double-blind, placebo-controlled clinical trial, non-obese men were randomized to receive 200-mg testosterone enanthate/wk (TEST) (n = 24) or placebo (PLA) (n = 26) during a 28-d inpatient, severe exercise- and diet-induced energy deficit. This study consisted of three consecutive phases. Participants were free-living and provided a eucaloric diet for 14-d during Phase 1. During Phase 2, participants were admitted to an inpatient unit, randomized to receive testosterone or placebo, and underwent SED for 28-d. During Phase 3, participants returned to their pre-study diet and physical activity habits. Untargeted metabolite profiling was conducted on serum samples collected during each phase. Body composition was measured using dual-energy X-ray absorptiometry after 11-d of Phase 1 and after 25-d of Phase 2 to determine changes in fat and lean mass. RESULTS: TEST had higher (Benjamini-Hochberg adjusted, q < 0.05) androgenic steroid and acylcarnitine, and lower (q < 0.05) amino acid metabolites after SED compared to PLA. Metabolomic differences were reversed by Phase 3. Changes in lean mass were associated (Bonferroni-adjusted, p < 0.05) with changes in androgenic steroid metabolites (r = 0.42-0.70), acylcarnitines (r = 0.37-0.44), and amino acid metabolites (r = - 0.36-- 0.37). Changes in fat mass were associated (p < 0.05) with changes in acylcarnitines (r = - 0.46-- 0.49) and changes in urea cycle metabolites (r = 0.60-0.62). CONCLUSION: Testosterone administration altered androgenic steroid, acylcarnitine, and amino acid metabolites, which were associated with changes in body composition during SED.
Asunto(s)
Metabolómica , Testosterona , Masculino , Humanos , Aminoácidos , PoliésteresRESUMEN
PURPOSE OF REVIEW: To highlight contemporary findings comparing the digestibility of animal and plant proteins, their stimulatory effects on muscle protein synthesis, and associations with sarcopenia. RECENT FINDINGS: Animal proteins are more digestible than plant proteins, resulting in greater amino acid availability and stimulation of muscle protein synthesis. However, isolated plant proteins, plant protein blends, and modified plant proteins enriched with indispensable amino acids can elicit comparable digestion and absorption kinetics to animal proteins. More research is needed to determine whether these modified plant protein sources can effectively mitigate sarcopenia risk. SUMMARY: Both animal and plant protein foods can be incorporated into a healthful eating plan that limits risk of age-related diseases, such as sarcopenia. Humans eat food rather than isolated nutrients; as such, considering the context of the overall diet and its impact on health, instead of solely focusing on individual nutrients in isolation, is important.
Asunto(s)
Proteínas Dietéticas Animales , Proteínas de Vegetales Comestibles , Sarcopenia , Aminoácidos/metabolismo , Proteínas Dietéticas Animales/administración & dosificación , Animales , Dieta , Humanos , Proteínas Musculares/biosíntesis , Proteínas de Vegetales Comestibles/administración & dosificación , Sarcopenia/prevención & controlRESUMEN
BACKGROUND: Short-term starvation and severe food deprivation (FD) reduce dietary iron absorption and restricts iron to tissues, thereby limiting the amount of iron available for erythropoiesis. These effects may be mediated by increases in the iron regulatory hormone hepcidin; however, whether mild to moderate FD has similar effects on hepcidin and iron homeostasis is not known. OBJECTIVES: To determine the effects of varying magnitudes and durations of FD on hepcidin and indicators of iron status in male and female mice. METHODS: Male and female C57BL/6J mice (14 wk old; n = 170) were randomly assigned to consume AIN-93M diets ad libitum (AL) or varying magnitudes of FD (10%, 20%, 40%, 60%, 80%, or 100%). FD was based on the average amount of food consumed by the AL males or females, and food was split into morning and evening meals. Mice were euthanized at 48 h and 1, 2, and 3 wk, and hepcidin and indicators of iron status were measured. Data were analyzed by Pearson correlation and one-way ANOVA. RESULTS: Liver hepcidin mRNA was positively correlated with the magnitude of FD at all time points (P < 0.05). At 3 wk, liver hepcidin mRNA increased 3-fold with 10% and 20% FD compared with AL and was positively associated with serum hepcidin (R = 0.627, P < 0.0001). Serum iron was reduced by â¼65% (P ≤ 0.01), and liver nonheme iron concentrations were â¼75% greater (P ≤ 0.01) with 10% and 20% FD for 3 wk compared with AL. Liver hepcidin mRNA at 3 wk was positively correlated with liver Bmp6 (R = 0.765, P < 0.0001) and liver gluconeogenic enzymes (R = >0.667, P < 0.05) but not markers of inflammation (P > 0.05). CONCLUSIONS: FD increases hepcidin in male and female mice and results in hypoferremia and tissue iron sequestration. These findings suggest that increased hepcidin with FD may contribute to the disturbances in iron homeostasis with undernutrition.
Asunto(s)
Hepcidinas , Inanición , Animales , Femenino , Privación de Alimentos , Hepcidinas/genética , Hormonas , Hierro , Hierro de la Dieta , Masculino , Ratones , Ratones Endogámicos C57BL , ARN MensajeroRESUMEN
BACKGROUND: Physical and psychological stress alter gut-brain axis activity, potentially causing intestinal barrier dysfunction that may, in turn, induce cognitive and mood impairments through exacerbated inflammation and blood brain barrier (BBB) permeability. These interactions are commonly studied in animals or artificial laboratory environments. However, military survival training provides an alternative and unique human model for studying the impacts of severe physical and psychological stress on the gut-brain axis in a realistic environment. PURPOSE: To determine changes in intestinal barrier and BBB permeability during stressful military survival training and identify relationships between those changes and markers of stress, inflammation, cognitive performance, and mood state. MATERIALS AND METHODS: Seventy-one male U.S. Marines (25.2 ± 2.6 years) were studied during Survival, Evasion, Resistance, and Escape (SERE) training. Measurements were conducted on day 2 of the 10-day classroom phase of training (PRE), following completion of the 7.5-day field-based simulation phase of the training (POST), and following a 27-day recovery period (REC). Fat-free mass (FFM) was measured to assess the overall physiologic impact of the training. Biomarkers of intestinal permeability (liposaccharide-binding protein [LBP]) and BBB permeability (S100 calcium-binding protein B [S100B]), stress (cortisol, dehydroepiandrosterone sulfate [DHEA-S] epinephrine, norepinephrine) and inflammation (interleukin-6 [IL-6], high-sensitivity C-reactive protein [hsCRP]) were measured in blood. Cognitive performance was assessed by psychomotor vigilance (PVT) and grammatical reasoning (GR) tests, and mood state by the Profile of Mood States (total mood disturbance; TMD), General Anxiety Disorder-7 (GAD-7), and Patient Health (PHQ-9) questionnaires. RESULTS: FFM, psychomotor vigilance, and LBP decreased from PRE to POST, while TMD, anxiety, and depression scores, and S100B, DHEA-S, IL-6, norepinephrine, and epinephrine concentrations all increased (all p ≤ 0.01). Increases in DHEA-S were associated with decreases in body mass (p = 0.015). Decreases in FFM were associated with decreases in LBP concentrations (p = 0.015), and both decreases in FFM and LBP were associated with increases in TMD and depression scores (all p < 0.05) but not with changes in cognitive performance. Conversely, increases in S100B concentrations were associated with decreases in psychomotor vigilance (p < 0.05) but not with changes in mood state or LBP concentrations. CONCLUSIONS: Evidence of increased intestinal permeability was not observed in this military survival training-based model of severe physical and psychological stress. However, increased BBB permeability was associated with stress and cognitive decline, while FFM loss was associated with mood disturbance, suggesting that distinct mechanisms may contribute to decrements in cognitive performance and mood state during the severe physical and psychological stress experienced during military survival training.
Asunto(s)
Barrera Hematoencefálica , Eje Cerebro-Intestino , Cognición , Estrés Psicológico , Afecto , Biomarcadores , Barrera Hematoencefálica/metabolismo , Deshidroepiandrosterona , Epinefrina , Humanos , Inflamación , Interleucina-6/metabolismo , Masculino , Norepinefrina , Permeabilidad , Estrés Psicológico/metabolismoRESUMEN
BACKGROUND: Clinical administration of testosterone is widely used due to a variety of claimed physical and cognitive benefits. Testosterone administration is associated with enhanced brain and cognitive function, as well as mood, in energy-balanced males, although such relationships are controversial. However, the effects of testosterone administration on the brains of energy-deficient males, whose testosterone concentrations are likely to be well below normal, have not been investigated. METHODS: This study collected functional magnetic resonance imaging (fMRI) data from 50 non-obese young men before (PRE) and shortly after (POST) 28 days of severe exercise-and-diet-induced energy deficit during which testosterone (200 mg testosterone enanthate per week in sesame oil, TEST) or placebo (sesame seed oil only, PLA) were administered. Scans were also collected after a post-energy-deficit weight regain period (REC). Participants completed five fMRI tasks that assessed aspects of: 1) executive function (Attention Network Task or ANT; Multi-Source Interference Task or MSIT; AXE Continuous Processing Task or AXCPT); 2) aggressive behavior (Provoked Aggression Task or AGG); and 3) latent emotion processing (Emotional Face Processing or EMO). RESULTS: Changes over time in task-related fMRI activation in a priori defined task-critical brain regions during performance of 2 out of 5 tasks were significantly different between TEST and PLA, with TEST showing greater levels of activation during ANT in the right anterior cingulate gyrus at POST and during MSIT in several brain regions at REC. Changes over time in objective task performance were not statistically significant; testosterone-treated volunteers had greater self-reported anger during AGG at POST. CONCLUSIONS: Testosterone administration can alter some aspects of brain function during severe energy deficit and increase levels of anger.
Asunto(s)
Agresión/fisiología , Emociones/fisiología , Ingestión de Energía/fisiología , Función Ejecutiva/fisiología , Imagen por Resonancia Magnética , Testosterona/farmacología , Adulto , Encéfalo/diagnóstico por imagen , Ejercicio Físico/fisiología , Humanos , Masculino , Adulto JovenRESUMEN
Dietary guidelines are formulated to meet minimum nutrient requirements, which prevent deficiencies and maintain health, growth, development, and function. These guidelines can be inadequate and contribute to disrupted homeostasis, lean body mass loss, and deteriorated performance in individuals who are working long, arduous hours with limited access to food in environmentally challenging locations. Environmental extremes can elicit physiological adjustments that alone alter nutrition requirements by upregulating energy expenditure, altering substrate metabolism, and accelerating body water and muscle protein loss. The mechanisms by which the environment, including high-altitude, heat, and cold exposure, alters nutrition requirements have been studied extensively. This contemporary review discusses physiological adjustments to environmental extremes, particularly when those adjustments alter dietary requirements.
Asunto(s)
Altitud , Frío , Calor , Estado Nutricional/fisiología , Metabolismo Energético , Humanos , Factores de TiempoRESUMEN
Hypoxia-induced insulin resistance appears to suppress exogenous glucose oxidation during metabolically matched aerobic exercise during acute (<8 h) high-altitude (HA) exposure. However, a better understanding of this metabolic dysregulation is needed to identify interventions to mitigate these effects. The objective of this study was to determine if differences in metabolomic profiles during exercise at sea level (SL) and HA are reflective of hypoxia-induced insulin resistance. Native lowlanders (n = 8 males) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically matched treadmill exercise at SL (757 mmHg) and HA (460 mmHg) after 5-h exposure. Exogenous glucose oxidation and glucose turnover were determined using indirect calorimetry and dual tracer technique ([13C]glucose and [6,6-2H2]glucose). Metabolite profiles were analyzed in serum as change (Δ), calculated by subtracting postprandial/exercised state SL (ΔSL) and HA (ΔHA) from fasted, rested conditions at SL. Compared with SL, exogenous glucose oxidation, glucose rate of disappearance, and glucose metabolic clearance rate (MCR) were lower (P < 0.05) during exercise at HA. One hundred and eighteen metabolites differed between ΔSL and ΔHA (P < 0.05, Q < 0.10). Differences in metabolites indicated increased glycolysis, tricarboxylic acid cycle, amino acid catabolism, oxidative stress, and fatty acid storage, and decreased fatty acid mobilization for ΔHA. Branched-chain amino acids and oxidative stress metabolites, Δ3-methyl-2-oxobutyrate (r = -0.738) and Δγ-glutamylalanine (r = -0.810), were inversely associated (P < 0.05) with Δexogenous glucose oxidation. Δ3-Hydroxyisobutyrate (r = -0.762) and Δ2-hydroxybutyrate/2-hydroxyisobutyrate (r = -0.738) were inversely associated (P < 0.05) with glucose MCR. Coupling global metabolomics and glucose kinetic data suggest that the underlying cause for diminished exogenous glucose oxidative capacity during aerobic exercise is acute hypoxia-mediated peripheral insulin resistance.
Asunto(s)
Ejercicio Físico , Glucosa/metabolismo , Hipoxia , Resistencia a la Insulina , Metabolómica , Adulto , Estudios Cruzados , Glucosa/administración & dosificación , Glucógeno/metabolismo , Humanos , Masculino , Oxidación-Reducción , Adulto JovenRESUMEN
PURPOSE OF REVIEW: To highlight emerging evidence challenging traditional recommendations to increase carbohydrate intake to optimize performance at high altitude. RECENT FINDINGS: Several studies have now clearly demonstrated that, compared with sea level, exogenous carbohydrate oxidation during aerobic exercise is blunted in lowlanders during initial exposure to high altitude. There is also no apparent ergogenic effect of ingesting carbohydrate during aerobic exercise on subsequent performance at high altitude, either initially after arriving or even after up to 22âdays of acclimatization. The inability to oxidize and functionally benefit from exogenous carbohydrate intake during exercise after arriving at high altitude coincides with hyperinsulinemia, accelerated glycogenolysis, and reduced peripheral glucose uptake. Collectively, these responses are consistent with a hypoxia-mediated metabolic dysregulation reflective of insulin resistance. Parallel lines of evidence have also recently demonstrated roles for the gut microbiome in host metabolism, bioenergetics, and physiologic responses to high altitude, implicating the gut microbiome as one potential mediator of hypoxia-mediated metabolic dysregulation. SUMMARY: Identification of novel and well tolerated nutrition and/or pharmacological approaches for alleviating hypoxia-mediated metabolic dysregulation and enhancing exogenous carbohydrate oxidation may be more effective for optimizing performance of lowlanders newly arrived at high altitude than traditional carbohydrate recommendations.
Asunto(s)
Altitud , Ejercicio Físico , Aclimatación , Carbohidratos , Humanos , HipoxiaRESUMEN
Protein quality is an important component of protein intake to support growth, development, and maintenance of essential body tissues and functions. Therefore, protein quality should be emphasized as a key characteristic during protein food selection within the larger context of healthy dietary patterns, especially when considering the wide variance of protein quality across animal- and plant-based foods. However, the USDA Dietary Guidelines for Americans (DGA) do not address specific protein quality recommendations within their protein foods ounce equivalents guidance or as a component of Healthy U.S. Style, Healthy Vegetarian, and Healthy Mediterranean Style dietary patterns. In addition, the protein foods ounce equivalents within the DGA are not established on any obvious metabolic equivalency characteristic [i.e., energy, protein, or essential amino acid (EAA) content], which creates misleading messaging of equivalent functional and metabolic benefit across protein foods. EAA content is a key characteristic of protein quality and can be a practical focal point for protein intake recommendations and achieving healthy dietary patterns. This review discusses the importance of protein quality, the state of messaging within DGA recommendations, and proposes EAA density (i.e., EAA content relative to total energy) as one practical approach to improve current dietary recommendations. Two recent publications that evaluated the DGA protein foods ounce equivalents based on metabolic effect and their application within DGA recommended dietary patterns are discussed.
Asunto(s)
Dieta , Política Nutricional , Aminoácidos Esenciales , Animales , Estado de Salud , Estados UnidosRESUMEN
BACKGROUND: Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE: The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS: Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS: Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS: ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.