Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Gen Comp Endocrinol ; 300: 113646, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058907

RESUMEN

Sex hormone-binding globulin (Shbg) is an important vertebrate blood carrier protein synthetized in the liver and involved in the transport and local regulation of sex steroids in target tissues. A novel shbg gene (shbgb) with a predominant ovarian expression was recently characterized. Being initially found only in salmonids, this shbgb was originally thought to result from the Salmonid-specific whole genome duplication. Using updated transcriptomic and genomic resources we identified Shbgb orthologs in non-salmonid teleosts (European eel, arowana), holosteans (spotted gar, bowfin), polypteriformes (reedfish), agnatha (sea lamprey) and in amphibians, and found that the classical Shbg gene (Shbga) displays a predominant hepatic expression whereas Shbgb has a predominant gonadal expression. Together, these results indicate that these two Shgb genes most likely originate from a whole genome duplication event at the root of vertebrate evolution, followed by numerous and independent losses and by tissue expression specialization of Shbga and Shbgb paralogs.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Globulina de Unión a Hormona Sexual/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gónadas/metabolismo , Humanos , Masculino , Filogenia , Dominios Proteicos , Globulina de Unión a Hormona Sexual/química , Globulina de Unión a Hormona Sexual/metabolismo , Sintenía/genética
2.
BMC Evol Biol ; 18(1): 167, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419815

RESUMEN

BACKGROUND: Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS: We demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION: These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.


Asunto(s)
Peces/genética , Genes Duplicados , Nucleoplasminas/genética , Animales , Secuencia Conservada/genética , Evolución Molecular , Femenino , Duplicación de Gen , Perfilación de la Expresión Génica , Genoma , Humanos , Nucleoplasminas/metabolismo , Péptidos/química , Filogenia , Dominios Proteicos , Sintenía/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746853

RESUMEN

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Asunto(s)
Crassostrea/metabolismo , Transducción de Señal , Taquicininas/metabolismo , Secuencia de Aminoácidos , Animales , Crassostrea/genética , Regulación de la Expresión Génica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reproducción , Taquicininas/química , Taquicininas/genética
4.
J Exp Zool B Mol Dev Evol ; 328(7): 709-721, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28944589

RESUMEN

Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.


Asunto(s)
Evolución Molecular , Peces/genética , Duplicación de Gen , Regulación de la Expresión Génica , Genoma , Animales , Especificidad de la Especie
5.
BMC Genomics ; 17: 368, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27189481

RESUMEN

With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Peces/genética , Duplicación de Gen , Expresión Génica , Genoma , Animales , Biología Computacional/métodos , Peces/clasificación , Perfilación de la Expresión Génica , Filogenia , Transcriptoma , Navegador Web
6.
BMC Evol Biol ; 14(1): 30, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24552453

RESUMEN

BACKGROUND: The neuropeptide Kiss and its receptor KissR are key-actors in the brain control of reproduction in mammals, where they are responsible for the stimulation of the activity of GnRH neurones. Investigation in other vertebrates revealed up to 3 Kiss and 4 KissR paralogs, originating from the two rounds of whole genome duplication in early vertebrates. In contrast, the absence of Kiss and KissR has been suggested in birds, as no homologs of these genes could be found in current genomic databases. This study aims at addressing the question of the existence, from an evolutionary perspective, of the Kisspeptin system in birds. It provides the first large-scale investigation of the Kisspeptin system in the sauropsid lineage, including ophidian, chelonian, crocodilian, and avian lineages. RESULTS: Sauropsid Kiss and KissR genes were predicted from multiple genome and transcriptome databases by TBLASTN. Phylogenetic and syntenic analyses were performed to classify predicted sauropsid Kiss and KissR genes and to re-construct the evolutionary scenarios of both gene families across the sauropsid radiation.Genome search, phylogenetic and synteny analyses, demonstrated the presence of two Kiss genes (Kiss1 and Kiss2 types) and of two KissR genes (KissR1 and KissR4 types) in the sauropsid lineage. These four genes, also present in the mammalian lineage, would have been inherited from their common amniote ancestor. In contrast, synteny analyses supported that the other Kiss and KissR paralogs are missing in sauropsids as in mammals, indicating their absence in the amniote lineage. Among sauropsids, in the avian lineage, we demonstrated the existence of a Kiss2-like gene in three bird genomes. The divergence of these avian Kiss2-like sequences from those of other vertebrates, as well as their absence in the genomes of some other birds, revealed the processes of Kiss2 gene degeneration and loss in the avian lineage. CONCLUSION: These findings contribute to trace back the evolutionary history of the Kisspeptin system in amniotes and sauropsids, and provide the first molecular evidence of the existence and fate of a Kiss gene in birds.


Asunto(s)
Proteínas Aviares/genética , Aves/genética , Kisspeptinas/genética , Filogenia , Receptores Acoplados a Proteínas G/genética , Reptiles/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Evolución Biológica , Aves/clasificación , Humanos , Kisspeptinas/química , Datos de Secuencia Molecular , Receptores Acoplados a Proteínas G/química , Reptiles/clasificación , Alineación de Secuencia , Sintenía
7.
Gen Comp Endocrinol ; 175(1): 163-72, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22107840

RESUMEN

This study aimed at investigating the role of sexual steroids in the regulation of the expression of the single aromatase gene and steroid receptor subtypes in the brain-pituitary-ovarian axis of the Japanese eel. Unlike other teleosts, which possess duplicated genes for aromatase, cyp19a1a and cyp19a1b, expressed in the gonads and in the brain, respectively, eel species possess a single cyp19a1. Phylogenetic analysis indicated that eel brain/gonadal cyp19a1 branches at the basis of both teleost gonadal cyp19a1a and brain cyp19a1b clades. Female eels treated with catfish pituitary homogenate (CPH) to induce sexual maturation showed an increase in the expression of cyp19a1 and aromatase enzymatic activity in the brain and in the ovaries. Treatments with sex steroids (estradiol-17ß, E(2) or testosterone, T) revealed that the increase in cyp19a1 expression in the brain may result from E(2)-specific induction. In contrast, the increase in cyp19a1 expression in the ovaries of CPH-treated eels is a result of steroid-independent control, probably from a direct effect of gonadotropins contained in the pituitary extract. Analysis of the expression of estrogen and androgen receptor subtypes, esr-α, esr-ß, ar-α and ar-ß, in eels treated with CPH or sex steroids revealed differential regulations. In CPH-treated eels, the expression of esr-α and ar-α was significantly increased in the brain, while the expression of ar-α and ar-ß was increased in the ovaries. No change was observed in esr-ß in any organ. Steroid treatments induced an upregulation by E(2) of esr-α, but not esr-ß expression, in the brain, pituitary and ovaries, while no autoregulation by T of its own receptors could be observed. These results reveal both steroid-dependent and -independent mechanisms in the regulation of cyp19a1 and steroid receptor subtype expression in the eel.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/metabolismo , Anguilas/metabolismo , Ovario/metabolismo , Hipófisis/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Estrógenos/farmacología , Femenino , Receptores Androgénicos/efectos de los fármacos , Receptores de Estrógenos/efectos de los fármacos , Transducción de Señal/fisiología , Testosterona/farmacología , Regulación hacia Arriba
8.
Sci Rep ; 8(1): 16424, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401878

RESUMEN

Chordate gastrin/cholecystokinin (G/CCK) and ecdysozoan sulfakinin (SK) signalling systems represent divergent evolutionary scenarios of a common ancestral signalling system. The present article investigates for the first time the evolution of the CCK/SK signalling system in a member of the Lophotrochozoa, the second clade of protostome animals. We identified two G protein-coupled receptors (GPCR) in the oyster Crassostrea gigas (Mollusca), phylogenetically related to chordate CCK receptors (CCKR) and to ecdysozoan sulfakinin receptors (SKR). These receptors, Cragi-CCKR1 and Cragi-CCKR2, were characterised functionally using a cell-based assay. We identified di- and mono-sulphated forms of oyster Cragi-CCK1 (pEGAWDY(SO3H)DY(SO3H)GLGGGRF-NH2) as the potent endogenous agonists for these receptors. The Cragi-CCK genes were expressed in the visceral ganglia of the nervous system. The Cragi-CCKR1 gene was expressed in a variety of tissues, while Cragi-CCKR2 gene expression was more restricted to nervous tissues. An in vitro bioassay revealed that different forms of Cragi-CCK1 decreased the frequency of the spontaneous contractions of oyster hindgut. Expression analyses in oysters with contrasted nutritional statuses or in the course of their reproductive cycle highlighted the plausible role of Cragi-CCK signalling in the regulation of feeding and its possible involvement in the coordination of nutrition and energy storage in the gonad. This study confirms the early origin of the CCK/SK signalling system from the common bilaterian ancestor and delivers new insights into its structural and functional evolution in the lophotrochozoan lineage.


Asunto(s)
Colecistoquinina/metabolismo , Moluscos/citología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Colecistoquinina/química , Regulación de la Expresión Génica , Células HEK293 , Humanos , Moluscos/genética , Moluscos/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-29375473

RESUMEN

The European eel (Anguilla anguilla) presents a blockade of sexual maturation at a prepubertal stage due to a deficient production of gonadotropins. We previously initiated, in the eel, the investigation of the kisspeptin system, one of the major gatekeepers of puberty in mammals, and we predicted the sequence of two Kiss genes. In the present study, we cloned and sequenced Kiss1 and Kiss2 cDNAs from the eel brain. The tissue distributions of Kiss1 and Kiss2 transcripts, as investigated by quantitative real-time PCR, showed that both genes are primarily expressed in the eel brain and pituitary. The two 10-residue long sequences characteristic of kisspeptin, eel Kp1(10) and Kp2(10), as well as two longer sequences, predicted as mature peptides, eel Kp1(15) and Kp2(12), were synthesized and functionally analyzed. Using rat Kiss1 receptor-transfected Chinese hamster ovary cells, we found that the four synthesized eel peptides were able to induce [Ca2+]i responses, indicating their ability to bind mammalian KissR-1 and to activate second messenger pathways. In primary culture of eel pituitary cells, all four peptides were able to specifically and dose-dependently inhibit lhß expression, without any effect on fshß, confirming our previous data with heterologous kisspeptins. Furthermore, in this eel in vitro system, all four peptides inhibited the expression of the type 2 GnRH receptor (gnrh-r2). Our data revealed a dual inhibitory effect of homologous kisspeptins on both pituitary lhß and gnrh-r2 expression in the European eel.

10.
Sex Dev ; 10(3): 111-29, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27441599

RESUMEN

Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Gónadas/metabolismo , Diferenciación Sexual/fisiología , Animales , Evolución Molecular , Femenino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Factores de Transcripción Forkhead/genética , Células Germinativas/metabolismo , Células Germinativas/fisiología , Gónadas/fisiología , Humanos , Masculino , Filogenia , Diferenciación Sexual/genética , Vertebrados/metabolismo , Vertebrados/fisiología
11.
Nat Genet ; 48(4): 427-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950095

RESUMEN

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


Asunto(s)
Peces/genética , Animales , Evolución Molecular , Femenino , Peces/metabolismo , Genoma , Humanos , Cariotipo , Modelos Genéticos , Especificidad de Órganos , Análisis de Secuencia de ADN , Transcriptoma
12.
PLoS One ; 10(5): e0126008, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946034

RESUMEN

Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.


Asunto(s)
Anguilla/genética , Evolución Molecular , Duplicación de Gen , Leptina/genética , Receptores de Leptina/genética , Anguilla/clasificación , Anguilla/fisiología , Animales , Femenino , Peces/genética , Masculino , Filogenia , Maduración Sexual/genética , Especificidad de la Especie , Sintenía , Distribución Tisular
13.
J Mol Endocrinol ; 52(3): T101-17, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24577719

RESUMEN

Following the discovery of kisspeptin (Kiss) and its receptor (GPR54 or KissR) in mammals, phylogenetic studies revealed up to three Kiss and four KissR paralogous genes in other vertebrates. The multiplicity of Kiss and KissR types in vertebrates probably originated from the two rounds of whole-genome duplication (1R and 2R) that occurred in early vertebrates. This review examines compelling recent advances on molecular diversity and phylogenetic evolution of vertebrate Kiss and KissR. It also addresses, from an evolutionary point of view, the issues of the structure-activity relationships and interaction of Kiss with KissR and of their signaling pathways. Independent gene losses, during vertebrate evolution, have shaped the repertoire of Kiss and KissR in the extant vertebrate species. In particular, there is no conserved combination of a given Kiss type with a KissR type, across vertebrate evolution. The striking conservation of the biologically active ten-amino-acid C-terminal sequence of all vertebrate kisspeptins, probably allowed this evolutionary flexibility of Kiss/KissR pairs. KissR mutations, responsible for hypogonadotropic hypogonadism in humans, mostly occurred at highly conserved amino acid positions among vertebrate KissR. This further highlights the key role of these amino acids in KissR function. In contrast, less conserved KissR regions, notably in the intracellular C-terminal domain, may account for differential intracellular signaling pathways between vertebrate KissR. Cross talk between evolutionary and biomedical studies should contribute to further understanding of the Kiss/KissR structure-activity relationships and biological functions.


Asunto(s)
Evolución Molecular , Kisspeptinas/genética , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Secuencia Conservada/genética , Duplicación de Gen , Variación Genética , Humanos , Metástasis de la Neoplasia/patología , Receptores de Kisspeptina-1 , Transducción de Señal , Relación Estructura-Actividad
14.
Artículo en Inglés | MEDLINE | ID: mdl-23272003

RESUMEN

During the past decade, the kisspeptin system has been identified in various vertebrates, leading to the discovery of multiple genes encoding both peptides (Kiss) and receptors (Kissr). The investigation of recently published genomes from species of phylogenetic interest, such as a chondrichthyan, the elephant shark, an early sarcopterygian, the coelacanth, a non-teleost actinopterygian, the spotted gar, and an early teleost, the European eel, allowed us to get new insights into the molecular diversity and evolution of both Kiss and Kissr families. We identified four Kissr in the spotted gar and coelacanth genomes, providing the first evidence of four Kissr genes in vertebrates. We also found three Kiss in the coelacanth and elephant shark genomes revealing two new species, in addition to Xenopus, presenting three Kiss genes. Considering the increasing diversity of kisspeptin system, phylogenetic, and synteny analyses enabled us to clarify both Kiss and Kissr classifications. We also could trace back the evolution of both gene families from the early steps of vertebrate history. Four Kissr and four Kiss paralogs may have arisen via the two whole genome duplication rounds (1R and 2R) in early vertebrates. This would have been followed by multiple independent Kiss and Kissr gene losses in the sarcopterygian and actinopterygian lineages. In particular, no impact of the teleost-specific 3R could be recorded on the numbers of teleost Kissr or Kiss paralogs. The origin of their diversity via 1R and 2R, as well as the subsequent occurrence of multiple gene losses, represent common features of the evolutionary histories of Kiss and Kissr families in vertebrates. In contrast, comparisons also revealed un-matching numbers of Kiss and Kissr genes in some species, as well as a large variability of Kiss/Kissr couples according to species. These discrepancies support independent features of the Kiss and Kissr evolutionary histories across vertebrate radiation.

15.
PLoS One ; 7(9): e44750, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957105

RESUMEN

The cyp19a1 gene that encodes aromatase, the only enzyme permitting conversion of C19 aromatizable androgens into estrogens, is present as a single copy in the genome of most vertebrate species, except in teleosts in which it has been duplicated. This study aimed at investigating the brain expression of a cyp19a1 gene expressed in both gonad and brain of Japanese eel, a basal teleost. By means of immunohistochemistry and in situ hybridization, we show that cyp19a1 is expressed only in radial glial cells of the brain and in pituitary cells. Treatments with salmon pituitary homogenates (female) or human chorionic gonadotrophin (male), known to turn on steroid production in immature eels, strongly stimulated cyp19a1 messenger and protein expression in radial glial cells and pituitary cells. Using double staining studies, we also showed that aromatase-expressing radial glial cells exhibit proliferative activity in both the brain and the pituitary. Altogether, these data indicate that brain and pituitary expression of Japanese eel cyp19a1 exhibits characteristics similar to those reported for the brain specific cyp19a1b gene in teleosts having duplicated cyp19a1 genes. This supports the hypothesis that, despite the fact that eels also underwent the teleost specific genome duplication, they have a single cyp19a1 expressed in both brain and gonad. Such data also suggest that the intriguing features of brain aromatase expression in teleost fishes were not gained after the whole genome duplication and may reflect properties of the cyp19a1 gene of ancestral Actinopterygians.


Asunto(s)
Aromatasa/biosíntesis , Anguilas/fisiología , Regulación Enzimológica de la Expresión Génica , Neuroglía/enzimología , Animales , Aromatasa/química , Encéfalo/metabolismo , Gonadotropina Coriónica/metabolismo , Evolución Molecular , Femenino , Peces , Gonadotropinas/metabolismo , Humanos , Inmunohistoquímica/métodos , Hibridación in Situ , Masculino , Neuroglía/citología , Hipófisis , Salmón
16.
PLoS One ; 7(11): e48931, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185286

RESUMEN

Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs). We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4) based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R) in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R) on the number of Kissr paralogs in current teleosts.


Asunto(s)
Evolución Molecular , Peces/genética , Kisspeptinas/metabolismo , Receptores de Superficie Celular/genética , Animales , Clonación Molecular , Secuencia Conservada/genética , ADN Complementario/genética , Peces/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma/genética , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA