Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO Rep ; 20(10): e47517, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31393064

RESUMEN

In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Regeneración Nerviosa , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Modelos Biológicos , Neuronas Motoras/metabolismo , Fosforilación , Unión Proteica , Transcripción Genética
2.
J Neurosci ; 36(37): 9710-21, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629720

RESUMEN

UNLABELLED: The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. SIGNIFICANCE STATEMENT: The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.


Asunto(s)
Apoptosis/fisiología , Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/fisiología , Proteínas de Unión al GTP rac/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Axotomía , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cobre/toxicidad , Proteínas del Citoesqueleto/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/fisiología , Integrinas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microscopía Confocal , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Regeneración/genética , Proteínas de Unión al GTP rac/genética
3.
J Cell Sci ; 128(2): 385-96, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25413345

RESUMEN

The binding of ligand to epidermal growth factor receptor (EGFR) causes the receptor to become activated and stimulates the endocytosis of EGFR. Early endosomes containing activated EGFR migrate along microtubules as they mature into late endosomes. We have recently shown that LRRK1, which is related to the familial Parkinsonism gene product Park8 (also known as LRRK2), regulates this EGFR transport in a manner dependent on LRRK1 kinase activity. However, the downstream targets of LRRK1 that might modulate this transport function have not been identified. Here, we identify CLIP-170 (also known as CLIP1), a microtubule plus-end protein, as a substrate of LRRK1. LRRK1 phosphorylates CLIP-170 at Thr1384, located in its C-terminal zinc knuckle motif, and this promotes the association of CLIP-170 with dynein-dynactin complexes. We find that LRRK1-mediated phosphorylation of CLIP-170 causes the accumulation of p150(Glued) (also known as DCTN1) a subunit of dynactin, at microtubule plus ends, thereby facilitating the migration of EGFR-containing endosomes. Thus, our findings provide new mechanistic insights into the dynein-driven transport of EGFR.


Asunto(s)
Dineínas/metabolismo , Receptores ErbB/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Complejo Dinactina , Dineínas/genética , Endocitosis/genética , Endosomas/genética , Endosomas/metabolismo , Receptores ErbB/genética , Células HeLa , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética
4.
Genes Cells ; 21(7): 696-705, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27193416

RESUMEN

The axon regeneration ability of neurons depends on the interplay of factors that promote and inhibit regeneration. In Caenorhabditis elegans, axon regeneration is promoted by the JNK MAP kinase (MAPK) pathway. Previously, we found that the endocannabinoid anandamide (AEA) inhibits the axon regeneration response of motor neurons after laser axotomy by suppressing the JNK signaling pathway. Here, we show that the G-protein-coupled receptors (GPCRs) NPR-19 and NPR-32 inhibit axon regeneration in response to AEA. Furthermore, we show that sensory neuron expression of the nape-1 gene, which encodes an enzyme synthesizing AEA, causes the regenerating motor axons to avoid sensory neurons and this avoidant response depends on NPR-19 and NPR-32. These results indicate that the navigation of regenerating axons is modulated by the action of AEA on NPR-19/32 GPCRs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Neuronas/efectos de los fármacos , Fosfolipasa D/genética , Receptores Acoplados a Proteínas G/genética , Regeneración/genética , Animales , Ácidos Araquidónicos/administración & dosificación , Axones/efectos de los fármacos , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Endocannabinoides/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Neuronas/metabolismo , Alcamidas Poliinsaturadas/administración & dosificación , Regeneración/efectos de los fármacos
5.
Genes Cells ; 21(4): 311-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26853528

RESUMEN

Mutations in LRRK2 are linked to autosomal dominant forms of Parkinson's disease. We identified two human proteins that bind to LRRK2: BAG2 and HSC70, which are known to form a chaperone complex. We characterized the role of their Caenorhabditis elegans homologues, UNC-23 and HSP-1, in the regulation of LRK-1, the sole homologue of human LRRK2. In C. elegans, LRK-1 determines the polarized sorting of synaptic vesicle (SV) proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi. In unc-23 mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons, a phenotype also observed in lrk-1 deletion mutants. Furthermore, we isolated mutations in the hsp-1 gene that can suppress the unc-23, but not the lrk-1 defect. We show that UNC-23 determines LRK-1 localization to the Golgi apparatus in cooperation with HSP-1. These results describe a chaperone-dependent mechanism through which LRK-1 localization is regulated.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Caenorhabditis elegans/citología , Chaperonas Moleculares/metabolismo , Vesículas Sinápticas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-25792136

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling cascades are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various types of cellular stress. Our evolving understanding of these signal cascades has been facilitated by genetic analyses and physiological characterization in model organisms such as the nematode Caenorhabditis elegans. Genetic and biochemical studies in C. elegans have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity. Recently it was demonstrated that MAPK signaling is also important for axon regeneration in C. elegans, and the use of C. elegans as a model system has significantly advanced our understanding of the largely conserved molecular mechanisms underlying axon regeneration. This review summarizes our current understanding of the role and regulation of MAPK signaling in C. elegans axon regeneration.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Sistema de Señalización de MAP Quinasas , Regeneración Nerviosa , Animales , Caenorhabditis elegans/metabolismo , Endocannabinoides/metabolismo
7.
Nat Commun ; 9(1): 3099, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082731

RESUMEN

Following axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase. Here, we identify the transthyretin (TTR)-like protein TTR-11 as a component functioning in axon regeneration upstream of integrin. We show that TTR-11 binds to both the extracellular domain of integrin-α and phosphatidylserine (PS). Axon injury induces the accumulation of PS around the injured axons in a manner dependent on TTR-11, the ABC transporter CED-7, and the caspase CED-3. Furthermore, we demonstrate that CED-3 activates CED-7 during axon regeneration. Thus, TTR-11 functions to link the PS injury signal to activation of the integrin pathway, which then initiates axon regeneration.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilserinas/metabolismo , Transducción de Señal , Animales , Animales Modificados Genéticamente , Apoptosis , Axones/metabolismo , Caspasas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Integrinas/metabolismo , Lípidos/química , Mutación , Regeneración Nerviosa , Fagocitosis , Plásmidos/metabolismo , Proteínas de Unión al GTP rac/metabolismo
8.
Cell Rep ; 24(7): 1880-1889, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110643

RESUMEN

The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that the RHO-1/Rho GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC-4/MLC) phosphorylation signaling pathway regulates axon regeneration. BRC-2 functions between RHO-1 and LET-502, suggesting that BRC-2 is required for the activation of LET-502 by RHO-1-GTP. We also find that one component that interacts with BRC-2, the ALP (α-actinin-associated LIM protein)/Enigma protein ALP-1, is required for regeneration and acts between LET-502 and MLC-4 phosphorylation. Furthermore, we demonstrate that ALP-1 associates with LET-502 and MLC-4. Thus, ALP-1 serves as a platform to activate MLC-4 phosphorylation mediated by the RHO-1-LET-502 signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas con Dominio LIM/genética , Cadenas Ligeras de Miosina/genética , Regeneración Nerviosa/genética , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axotomía/métodos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Cadenas Ligeras de Miosina/metabolismo , Proyección Neuronal/genética , Plasticidad Neuronal/genética , Fosforilación , Unión Proteica , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
9.
Bio Protoc ; 7(11): e2312, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541078

RESUMEN

Organisms have developed many protective systems to reduce the toxicity from heavy metals. The nematode Caenorhabditis elegans has been widely used to determine the protective mechanisms against heavy metals. Responses against heavy metals can be monitored by expression of reporter genes, while sensitivity can be determined by quantifying growth or survival rate following exposure to heavy metals.

10.
Nat Commun ; 7: 10388, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26790951

RESUMEN

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Animales , Axotomía , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Transducción de Señal , Factores de Transcripción/genética
11.
Nat Commun ; 3: 1136, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23072806

RESUMEN

The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Endocannabinoides/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Sistema de Señalización de MAP Quinasas , Regeneración Nerviosa/fisiología , Proteínas Tirosina Quinasas/metabolismo , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Ácidos Araquidónicos/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Genes de Helminto/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Alcamidas Poliinsaturadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA