Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 24(9): 4229-4239, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37638739

RESUMEN

In this study, a circular conjugate of granulocyte colony-stimulating factor (G-CSF) was prepared by conjugating the two end-chains of poly(ethylene glycol) (PEG) to two different sites of the protein. For the orthogonal conjugation, a heterobifunctional PEG chain was designed and synthesized, bearing the dipeptide ZGln-Gly (ZQG) at one end-chain, for transglutaminase (TGase) enzymatic selective conjugation at Lys41 of G-CSF, and an aldehyde group at the opposite end-chain, for N-terminal selective reductive alkylation of the protein. The cPEG-Nter/K41-G-CSF circular conjugate was characterized by physicochemical methods and compared with native G-CSF and the corresponding linear monoconjugates of G-CSF, PEG-Nter-G-CSF, and PEG-K41-G-CSF. The results demonstrated that the circular conjugate had improved physicochemical and thermal stability, prolonged pharmacokinetic interaction, and retained the biological activity of G-CSF. The PEGylation strategy employed in this study has potential applications in the design of novel protein-based therapeutics.


Asunto(s)
Aldehídos , Factor Estimulante de Colonias de Granulocitos , Alquilación , Fenómenos Químicos , Dipéptidos
2.
Mol Pharm ; 19(1): 345-353, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34842438

RESUMEN

Here, we evaluated the feasibility of non-prodrug PEG-drug conjugates to decrease the accumulation of drugs within the placental tissues. The results showed that PEG was biocompatible with the human placenta with no alteration of the basal rate of proliferation or apoptosis in term placental explants. No significant changes in the released levels of lactate dehydrogenase and the human chorionic gonadotropin were observed after PEG treatment. The cellular uptake studies revealed that conjugating Cy5.5 and haloperidol to PEG significantly reduced (by up to ∼40-fold) their uptake by the placenta. These findings highlight the viability of novel non-prodrug polymer-drug conjugates to avoid the accumulation of drugs within the placenta.


Asunto(s)
Placenta/metabolismo , Polietilenglicoles/química , Complicaciones del Embarazo/tratamiento farmacológico , Composición de Medicamentos/métodos , Femenino , Haloperidol/farmacocinética , Humanos , Placenta/efectos de los fármacos , Polietilenglicoles/efectos adversos , Polímeros , Embarazo
3.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023830

RESUMEN

Cisplatin is the first-line treatment for different types of solid tumors, such as ovarian, testicular, bladder, cervical, head and neck, lung, and esophageal cancers. The main problem related to its clinical use is the onset of drug resistance. In the last decades, among the studied molecular mechanisms of cisplatin resistance, metabolic reprogramming has emerged as a possible one. This review focuses on the pentose phosphate pathway (PPP) playing a pivotal role in maintaining the high cell proliferation rate and representing an advantage for cancer cells. In particular, the oxidative branch of PPP plays a role in oxidative stress and seems to be involved in cisplatin resistance. In light of these considerations, it has been demonstrated that overexpression and higher enzymatic activity of different enzymes of both oxidative and non-oxidative branches (such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transketolase) increase cisplatin resistance, and their silencing or combined treatment with cisplatin could restore cisplatin sensitivity. Moreover, drug delivery systems loaded with both PPP inhibitors and cisplatin give the possibility of reaching cancer cells selectively. In conclusion, targeting PPP is becoming a strategy to overcome cisplatin resistance; however, further studies are required to better understand the mechanisms.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato
4.
J Pept Sci ; 25(4): e3155, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30809901

RESUMEN

Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV-1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus-killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half-life of FITC-AAR029b was substantial both alone and liposome-encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome-encapsulated FITC-AAR029b exhibited a 15-fold reduced clearance rate from serum compared with the free FITC-cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long-acting HIV-1 inactivators against HIV-1 infection.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , VIH-1/efectos de los fármacos , Compuestos Macrocíclicos/farmacocinética , Péptidos/farmacocinética , Triazoles/farmacocinética , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Liposomas , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Triazoles/química , Triazoles/farmacología
5.
Bioconjug Chem ; 27(11): 2695-2706, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27731976

RESUMEN

Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.


Asunto(s)
Glutamina/química , Interferón-alfa/química , Lisina/química , Transglutaminasas/metabolismo , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/farmacocinética , Antivirales/farmacología , Sitios de Unión , Humanos , Interferón alfa-2 , Interferón-alfa/farmacocinética , Interferón-alfa/farmacología , Modelos Moleculares , Peso Molecular , Polietilenglicoles/química , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Especificidad por Sustrato , Vesiculovirus/efectos de los fármacos
6.
Biomacromolecules ; 16(2): 550-7, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25543760

RESUMEN

The aim of this work was to evaluate the potential of INVITE-based nanomicelles, an amphiphilic polymer constituted by inulin (INU) and vitamin E (VITE), as a platform for improving the biopharmaceutical properties of hydrophobic drugs. For this purpose, curcumin was selected as a model and curcumin-INVITE nanomicelles were prepared. This drug delivery system was characterized both in vitro for what concerns the physicochemical properties, blood compatibility, and cellular uptake, and in vivo for the evaluation of the pharmacokinetic profile. It was found that these nanomicelles released curcumin in a controlled manner, and they were able to penetrate cellular membrane. Moreover, they showed an improved pharmacokinetic profile after intravenous administration. In conclusion, INVITE micelles might constitute promising nanocarriers for improving the biopharmaceutical performance of hydrophobic drugs.


Asunto(s)
Curcumina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Inulina/administración & dosificación , Micelas , Nanopartículas/administración & dosificación , alfa-Tocoferol/administración & dosificación , Administración Intravenosa , Animales , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Células HEK293 , Humanos , Inulina/metabolismo , Ratones , Ratones Endogámicos BALB C , Nanopartículas/metabolismo , alfa-Tocoferol/metabolismo
7.
Bioconjug Chem ; 25(2): 433-41, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24450424

RESUMEN

Gene therapy, siRNA, and therapeutic aptamers attract great interest owing to their versatility to treat a wide range of diseases and their potential high selectivity. Unfortunately, oligonucleotide-based therapeutics suffer rapid degradation by nucleases, scarce cell internalization, and fast kidney clearance. To address these limitations, the covalent attachment by mild chemical reactions of an activated polyethylene glycol (PEG) is widely used to obtain PEGylated nucleic acids showing a more favorable pharmacokinetic profile. We describe here a method for the enzymatic formation of PEGylated nucleic acids employing T4 DNA ligase: the ligation protocol was set up and optimized allowing the complete achievement of PEGylated oligonucleotides amenable to further enzymatic reactions. The feasibility of this approach for bioconjugation was demonstrated employing a set of PEG-donors and oligonucleotide acceptors, differing in the chemical link between PEG and the oligonucleotide donor, and in the length, sequence, and structure of the oligonucleotides employed. The ligase reaction allowed us to obtain double-stranded as well as single-stranded oligonucleotides, thus demonstrating the applicability of the method to a variety of substrates suitable for diagnostic and therapeutic applications.


Asunto(s)
Enzimas/química , Oligonucleótidos/química , Polietilenglicoles/química , Unión Proteica , Trombina/química
8.
Biomater Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940612

RESUMEN

PEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model. The results demonstrated that the super stealth liposomes had suitable physicochemical properties for in vivo administration and could significantly increase the efficacy of doxorubicin in breast cancer lung metastasis tumor-bearing mice compared to the free drug. The super stealth liposomes also increased doxorubicin accumulation inside the tumor tissue. The permanence of PEG on the surface of the super stealth liposomes favored the formation of a depot of therapeutic nanocarriers inside the tumor tissue by improving their permanence after stopping treatment. The doxorubicin-loaded super stealth liposomes increased the survival of the mouse tumor model. These promising results demonstrate that the doxorubicin-loaded super stealth liposomes could be an effective nanomedicine to treat metastatic breast cancer.

9.
Bioconjug Chem ; 24(3): 456-63, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23432141

RESUMEN

Several strategies for site-specific PEGylation have been successfully exploited to conjugate poly(ethylene glycol) (PEG) to pharmaceutical proteins. The advantages sought are those of improving efficacy and increasing the half-life of conjugated proteins while achieving a higher degree of homogeneity. Recombinant human growth hormone (hGH) was thus PEGylated exploiting two site-specific strategies: N-terminal PEGylation using the PEG20 kDa-aldehyde polymer and microbial transglutaminase (mTGase) mediated enzymatic PEGylation using PEG20 kDa-NH2. N-Terminal PEGylation of hGH was carried out by covalent attachment of PEG to the α-amine residue of Phe1 that yielded the monoconjugate PEG-Nter-hGH with a mass of 44152.2 Da, as measured by MALDI-TOF mass spectrometry. The mTGase mediated PEGylation, performed in a water/ethanol solution mixture, allowed a PEG coupling reaction only at the level of hGH Gln141, yielding the single monoconjugate PEG-Gln141-hGH with a mass of 44064.9 Da. Circular dichroism studies showed that both conjugation strategies preserved the native-like secondary structures of hGH. It is vital to maintain the structural integrity of hGH if PEGylated hGH is to be used in therapeutic applications. As expected, the pharmacokinetic profile in rats of PEG-Nter-hGH and PEG-Gln141-hGH revealed a significant increase in systemic exposure with respect to unmodified hGH. The conjugates showed a half-life increase of 4.5-fold with respect to hGH. These results demonstrate that both chemical and enzymatic site-selective PEGylation of hGH generates conjugates with a prolonged half-life.


Asunto(s)
Hormona de Crecimiento Humana/química , Hormona de Crecimiento Humana/metabolismo , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Femenino , Hormona de Crecimiento Humana/genética , Humanos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
10.
Blood Transfus ; 21(5): 441-451, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36795340

RESUMEN

Over the last three decades, the continuous evolution of recombinant factor VIII (rFVIII) concentrates for replacement treatment of hemophilia A, including recent extended half-life products, implies that patients may switch from one product to another, technologically more advanced, with the aim of improving treatment efficacy, safety, management and, ultimately, quality of life. In this scenario, the issues of bioequivalence of rFVIII products and the clinical implications of their interchangeability are keenly debated, in particular when economic reasons or purchasing systems influence product availability and choices. Although sharing the same Anatomical Therapeutic Chemical (ATC) level, rFVIII concentrates, as other biological products, show relevant differences in terms of molecular structure, source and manufacturing process, which make them unique products, recognized as new active substances by regulatory agencies. Moreover, data from clinical trials with both standard and extended half-life products clearly document the large inter-patient variability of pharmacokinetic profiles after administering the same dose of the same product; in cross-over evaluations, even when mean values are comparable, some patients show better patterns with one product or with the comparator one. Pharmacokinetic assessment thus reflects the response to a specific product in the individual patient, with his genetic determinants, only partially identified, affecting the behavior of exogenous FVIII. These concepts, consistent with the currently recommended approach of personalization of prophylaxis, are discussed in this position paper endorsed by the Italian Association of Hemophilia Centers (AICE), highlighting that ATC or other available classifications do not completely consider differences between drugs and innovations and that substitutions of rFVIII products will not invariably ensure the previously achieved clinical outcomes or generate benefits for all patients.


Asunto(s)
Factor VIII , Hemofilia A , Humanos , Factor VIII/efectos adversos , Hemofilia A/tratamiento farmacológico , Equivalencia Terapéutica , Calidad de Vida , Resultado del Tratamiento , Proteínas Recombinantes/uso terapéutico
11.
J Mech Behav Biomed Mater ; 143: 105908, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209594

RESUMEN

Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film. In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary approaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheological analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level. For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model.


Asunto(s)
Síndromes de Ojo Seco , Ácido Hialurónico , Humanos , Gotas Lubricantes para Ojos , Peso Molecular , Ojo , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Mucinas/análisis
12.
Int J Pharm ; 644: 123319, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37586576

RESUMEN

The emergence of SARS-CoV-2 in Wuhan, China in 2019 has had a profound impact on humanity in every facet. While vaccines against this viral pathogen have been approved a year later, limitations to this therapeutic intervention persist, such as drug sensitivity to transportation and storage conditions, as well as significant financial losses from non-injected resuspended vials. Our research delves into the effects of thermal denaturation (4 - 40 °C) and light irradiation (720 and 10460 kJ/m2) on the mRNA-based vaccines BNT162b2 from BioNTech/Pfizer and mRNA-1273 from Moderna. We also investigated vaccine stability following incubation in syringes to simulate potential interactions with silicon oil. By assaying the effects of these stressors via biochemical and biophysical methods, we aim to elucidate the physicochemical properties, integrity, and stability of these mRNA-based vaccines. Furthermore, the incorporation of a fluorophore into both vaccines allowed us to monitor their localization within cells and assess their capacity to evade vesicular transport mechanisms, thus evaluating the differences between the two formulations. A comprehensive understanding of the aforementioned attributes can enable the establishment of optimal storage and manipulation conditions for these vaccines, thereby ensuring their safe and efficacious application while minimizing the waste of functional and safe therapeutic agents.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , ARN Mensajero
13.
Adv Healthc Mater ; 12(29): e2301650, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37590033

RESUMEN

Liposomes play an important role in the field of drug delivery by virtue of their biocompatibility and versatility as carriers. Stealth liposomes, obtained by surface decoration with hydrophilic polyethylene glycol (PEG) molecules, represent an important turning point in liposome technology, leading to significant improvements in the pharmacokinetic profile compared to naked liposomes. Nevertheless, the generation of effective targeted liposomes-a central issue for cancer therapy-has faced several difficulties and clinical phase failures. Active targeting remains a challenge for liposomes. In this direction, a new Super Stealth Immunoliposomes (SSIL2) composed of a PEG-bi-phospholipids derivative is designed that stabilizes the polymer shielding over the liposomes. Furthermore, its counterpart, conjugated to the fragment antigen-binding of trastuzumab (Fab'TRZ -PEG-bi-phospholipids), is firmly anchored on the liposomes surface and correctly orients outward the targeting moiety. Throughout this study, the performances of SSIL2 are evaluated and compared to classic stealth liposomes and stealth immunoliposomes in vitro in a panel of cell lines and in vivo studies in zebrafish larvae and rodent models. Overall, SSIL2 shows superior in vitro and in vivo outcomes, both in terms of safety and anticancer efficacy, thus representing a step forward in targeted cancer therapy, and valuable for future development.


Asunto(s)
Liposomas , Neoplasias , Animales , Liposomas/química , Pez Cebra , Sistemas de Liberación de Medicamentos , Fosfolípidos , Polietilenglicoles/química
14.
Eur J Pharm Sci ; 187: 106489, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311533

RESUMEN

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Ácido Hialurónico , Enzima Convertidora de Angiotensina 2 , Sulfatos , Ratones Transgénicos
15.
PLoS One ; 17(3): e0265749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316287

RESUMEN

Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine able to induce appetite reduction, weight loss and antidiabetic effects. However, its susceptibility to neutralizing anti-CNTF antibodies in patients hampered its use for treatment of human obesity and diabetes. In addition, CNTF has a very short plasma half-life, which limits its use as a therapeutic agent. Solutions, directed to prolong its in vivo effects, vary from the implantation of encapsulated secreting cells to identification of more active variants or chemical modification of the protein itself. PEGylation is a widely used modification for shielding proteins from circulating antibodies and for increasing their plasma half-life. Here, we have selected DH-CNTF, a CNTF variant which has a 40-fold higher affinity for the CNTF receptor α accompanied by an increased activity in cellular assays. The PEGylated DH-CNTF retained the biological activity of native protein in vitro and showed a significant improvement of pharmacokinetic parameters. In an acute model of glucose tolerance, the PEG-DH-CNTF was able to reduce the glycemia in diet-induced obese animals, with a performance equaled by a 10-fold higher dose of DH-CNTF. In addition, the PEGylated DH-CNTF analog demonstrated a more potent weight loss effect than the unmodified protein, opening to the use of CNTF as weight reducing agent with treatment regimens that can better meet patient compliance thanks to reduced dosing schedules.


Asunto(s)
Factor Neurotrófico Ciliar , Obesidad , Animales , Factor Neurotrófico Ciliar/farmacología , Dieta , Humanos , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Polietilenglicoles/farmacología , Proteínas , Receptor de Factor Neurotrófico Ciliar/metabolismo , Pérdida de Peso
16.
Biochemistry ; 50(35): 7546-56, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21770429

RESUMEN

Human interleukin-5 receptor α (IL5Rα) is a glycoprotein that contains four N-glycosylation sites in the extracellular region. Previously, we found that enzymatic deglycosylation of IL5Rα resulted in complete loss of IL5 binding. To localize the functionally important carbohydrate moieties, we employed site-directed mutagenesis at the N-glycosylation sites (Asn(15), Asn(111), Asn(196), and Asn(224)). Because Asn-to-Gln mutagenesis caused a significant loss of structural integrity, we used diverse mutations to identify stability-preserving changes. We also rationally designed mutations at and around the N-glycosylation sites based on sequence alignment with mouse IL5Rα and other cytokine receptors. These approaches were most successful at Asn(15), Asn(111), and Asn(224). In contrast, any replacement at Asn(196) severely reduced stability, with the N196T mutant having a reduced binding affinity for IL5 and diminished biological activity because of the lack of cell surface expression. Lectin inhibition analysis suggested that the carbohydrate at Asn(196) is unlikely involved in direct ligand binding. Taking this into account, we constructed a stable variant, with triple mutational deglycosylation (N15D, I109V/V110T/N111D, and L223R/N224Q). The re-engineered protein retained Asn(196) while the other three glycosylation sites were eliminated. This mostly deglycosylated variant had the same ligand binding affinity and biological activity as fully glycosylated IL5Rα, thus demonstrating a unique role for Asn(196) glycosylation in IL5Rα function. The results suggest that unique carbohydrate groups in multiglycosylated receptors can be utilized asymmetrically for function.


Asunto(s)
Asparagina/química , Asparagina/genética , Subunidad alfa del Receptor de Interleucina-5/química , Subunidad alfa del Receptor de Interleucina-5/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Asparagina/fisiología , Conformación de Carbohidratos , Línea Celular , Drosophila melanogaster , Variación Genética , Glicosilación , Humanos , Subunidad alfa del Receptor de Interleucina-5/fisiología , Ligandos , Ratones , Datos de Secuencia Molecular , Unión Proteica/genética
17.
Bioconjug Chem ; 22(5): 976-86, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21452890

RESUMEN

Polyoxazoline polymers with methyl (PMOZ), ethyl (PEOZ), and propyl (PPOZ) side chains were prepared by the living cationic polymerization method and purified by ion-exchange chromatography. The following properties of polyoxazoline (POZ) were measured: apparent hydrodynamic radius by aqueous size-exclusion chromatography, relative lipophilicity by reverse-phase chromatography, and viscosity by cone-plate viscometry. The PEOZ polymers of different molecular weights were first functionalized and then conjugated to model biomolecules such as bovine serum albumin, catalase, ribonuclease, uricase, and insulin. The conjugates of catalase, uricase, and ribonuclease were tested for in vitro activity using substrate-specific reaction methods. The conjugates of insulin were tested for glucose lowering activity by injection to naïve Sprague-Dawley rats. The conjugates of BSA were injected into New Zealand white rabbits and serum samples were collected periodically and tested for antibodies to BSA. The safety of POZ was also determined by acute and chronic dosing to rats. The results showed that linear polymers of POZ with molecular weights of 1 to 40 kDa can easily be made with polydispersity values below 1.10. Chromatography results showed that PMOZ and PEOZ have a hydrodynamic volume slightly lower than PEG; PEOZ is more lipophilic than PMOZ and PEG; and PEOZ is significantly less viscous than PEG especially at the higher molecular weights. When PEOZ was attached to the enzymes catalase, ribonuclease, and uricase, the in vitro activity of the resultant bioconjugates depended on the extent of protein modification. POZ conjugates of insulin lowered blood glucose levels for a period of 8 h when compared to 2 h for insulin alone. PEOZ, like PEG, was also able to successfully attenuate the immunogenic properties of BSA. The POZ polymers (10 and 20 kDa) are safe when administered intravenously to rats, and the maximum tolerated dose (MTD) was greater than 2 g/kg. Blood counts, serum chemistry, organ weights, and the histopathology of key organs were normal. These results conclude that POZ has the desired drug delivery properties for a new biopolymer.


Asunto(s)
Sistemas de Liberación de Medicamentos , Poliaminas/farmacocinética , Amidas/síntesis química , Amidas/química , Amidas/farmacocinética , Animales , Bovinos , Cromatografía por Intercambio Iónico , Eritrocitos/química , Eritrocitos/efectos de los fármacos , Femenino , Insulina/química , Masculino , Ratones , Modelos Animales , Estructura Molecular , Poliaminas/síntesis química , Poliaminas/química , Proteínas/química , Conejos , Ratas , Ratas Sprague-Dawley , Distribución Tisular
18.
Mol Pharm ; 8(4): 1063-72, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21608527

RESUMEN

Poly(ethylene glycol) (PEG) is the most popular polymer for protein conjugation, but its potential as carrier of low molecular weight drugs has been limited by the intrinsic low loading, owing to its chemical structure. In fact, only the two end chain groups of PEG can be modified and exploited for drug coupling. We have demonstrated that by synthesizing a dendrimer structure at the polymer end chains, it is possible to increase the drug payload and overcome this limitation. Furthermore, this approach can be improved by using heterobifunctional PEG. These polymers allow the precise linking of two different drugs, or a drug and a targeting agent, on the same polymeric chain. Heterobifunctional PEG-dendrimers have been obtained with defined chemical structures leading to their attractive use as drug delivery systems. In fact, they offer a double benefit; first, the possibility to choose the best drug/targeting agent ratio, and second, the separation of the two functions, activity and targeting, which are coupled at the opposite polymer end chains. In this study, we investigated the role of a PEG-dendrimer, H(2)N-PEG-dendrimer-(COOH)(4), as carrier for a combination of paclitaxel (PTX) and alendronate (ALN). PTX is a potent anticancer drug that is affected by severe side effects originating from both the drug itself and its solubilizing formulation, Cremophor EL. ALN is an aminobiphosphonate used for the treatment of osteoporosis and bone metastases as well as a bone-targeting moiety. The PTX-PEG-ALN conjugate was designed to exploit active targeting by the ALN molecule and passive targeting through the enhanced permeability and retention (EPR) effect. Our conjugate demonstrated a great binding affinity to the bone mineral hydroxyapatite in vitro and an IC(50) comparable to that of the free drugs combination in human adenocarcinoma of the prostate (PC3) cells. The PTX-PEG-ALN conjugate exhibited an improved pharmacokinetic profile compared with the free drugs owed to the marked increase in their half-life. In addition, PTX-PEG-ALN could be solubilized directly in physiological solutions without the need for Cremophor EL. The data presented in this manuscript encourage further investigations on the potential of PTX-PEG-ALN as treatment for cancer bone metastases.


Asunto(s)
Alendronato/química , Alendronato/farmacología , Neoplasias Óseas/tratamiento farmacológico , Dendrímeros/química , Paclitaxel/química , Paclitaxel/farmacología , Polietilenglicoles/química , Alendronato/farmacocinética , Alendronato/uso terapéutico , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Femenino , Hemólisis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Paclitaxel/farmacocinética , Paclitaxel/uso terapéutico , Ratas
19.
Pharm Res ; 28(10): 2412-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21611874

RESUMEN

PURPOSE: A new approach for non-covalent protein PEGylation is translated from immobilized metal ion affinity chromatography, and based on metal coordination bonds between a chelating agent linked to PEG, nitrilotriacetic acid (NTA), and the ring nitrogen of histidines in a protein. METHODS: PEG-NTA conjugates were synthesized differing in the number of NTA units and in the polymer structure. Three derivatives were investigated in association experiments with five model proteins. The most promising complex, PEG8-(NTA)(8)-Cu(2+)-G-CSF (granulocyte colony stimulating factor), was thoroughly characterized and the pharmacokinetic profile was evaluated in rats. RESULTS: The experiments demonstrated that only PEG8-(NTA)(8), bearing eight NTA molecules on flexible PEG arms, associated strongly with those proteins having several histidines. The protein secondary structure was not affected in the complex. PEG8-(NTA)(8)-Cu(2+)-G-CSF showed a K (D) of 4.7 nM, as determined by surface plasmon resonance, but the association was not stable in vivo. CONCLUSIONS: PEG8-(NTA)(8) is the first derivative able to associate with native proteins and form soluble complexes with a nanomolar K (D). The study highlights the need of a multivalent and flexible coordination and encourages further investigations to increase the stability of PEG8-(NTA)(8) complexes in vivo either through the use of protein mutants or His-tag proteins.


Asunto(s)
Quelantes/química , Complejos de Coordinación/síntesis química , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/química , Polietilenglicoles/química , Proteínas/química , Animales , Quelantes/síntesis química , Quelantes/farmacocinética , Cromatografía de Afinidad/métodos , Complejos de Coordinación/química , Complejos de Coordinación/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Factor Estimulante de Colonias de Granulocitos/química , Factor Estimulante de Colonias de Granulocitos/farmacocinética , Histidina/química , Masculino , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/farmacocinética , Ratas , Ratas Sprague-Dawley , Resonancia por Plasmón de Superficie/métodos
20.
Biotechnol Lett ; 33(3): 617-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21103910

RESUMEN

Many enzymes used as digestive aids exhibit, at best, moderate stability when incubated under gastrointestinal conditions. A supplemental ß-galactosidase administered orally to treat lactose intolerance was conjugated to 40 kDa, branched polyethylene glycol (PEG). PEGylation increased the enzyme's relative activity at lower pH values (2.5-4.5) and doubled enzyme stability at pH 2.5. The PEGylated enzyme retained significantly more residual activity after exposure to simulated gastric conditions (52% versus 31%), a consequence of protection from both pepsin and low pH mediated inactivation. Conjugation also provided significant protection against the proteolytic component of pancreatin. Overall, the PEGylated enzyme retained over twice the levels of residual activity recorded for non-PEGylated enzyme after exposure to complete simulated gastrointestinal conditions. PEGylation also marginally improved the enzyme's kinetic characteristics. When using its physiological substrate (lactose), K(m) values recorded were slightly decreased (from 83 to 60 µM) and k(cat)/K(m) values (M(-1) s(-1)) were increased from 100 to 147. This appears to be the first report of the use of a conjugated PEG to stabilize a digestive enzyme and the first report of the ability of conjugated PEG to stabilize a protein at low pH.


Asunto(s)
Polietilenglicoles/química , Ingeniería de Proteínas/métodos , beta-Galactosidasa/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , beta-Galactosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA