Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 479(15): 1609-1619, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35851603

RESUMEN

Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of ß and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and ß1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA-PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of ß1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified ß1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo
2.
Protein Expr Purif ; 167: 105524, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31678667

RESUMEN

Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.


Asunto(s)
Receptores Acoplados a Proteínas G/biosíntesis , Animales , Línea Celular , Clonación Molecular , Drosophila melanogaster , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Expresión Génica , Maleatos/química , Poliestirenos/química , Receptores Acoplados a Proteínas G/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Solubilidad
3.
Biochim Biophys Acta Biomembr ; 1860(4): 809-817, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28865797

RESUMEN

New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Polímeros/química , Membrana Dobles de Lípidos/metabolismo , Maleatos/química , Maleatos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Estirenos/química , Estirenos/metabolismo
4.
Biochem J ; 473(23): 4349-4360, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27694389

RESUMEN

The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.


Asunto(s)
Maleatos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Poliestirenos/química , Proteínas Portadoras/química , Proteínas Portadoras/aislamiento & purificación , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA