Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Analyst ; 149(8): 2351-2362, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375597

RESUMEN

Monitoring the coordinated signaling of dopamine (DA) and serotonin (5-HT) is important for advancing our understanding of the brain. However, the co-detection and robust quantification of these signals at low concentrations is yet to be demonstrated. Here, we present the quantification of DA and 5-HT using nano-graphitic (NG) sensors together with fast-scan cyclic voltammetry (FSCV) employing an engineered N-shape potential waveform. Our method yields 6% error in quantifying DA and 5-HT analytes present in in vitro mixtures at concentrations below 100 nM. This advance is due to the electrochemical properties of NG sensors which, in combination with the engineered FSCV waveform, provided distinguishable cyclic voltammograms (CVs) for DA and 5-HT. We also demonstrate the generalizability of the prediction model across different NG sensors, which arises from the consistent voltammetric fingerprints produced by our NG sensors. Curiously, the proposed engineered waveform also improves the distinguishability of DA and 5-HT CVs obtained from traditional carbon fiber (CF) microelectrodes. Nevertheless, this improved distinguishability of CVs obtained from CF is inferior to that of NG sensors, arising from differences in the electrochemical properties of the sensor materials. Our findings demonstrate the potential of NG sensors and our proposed FSCV waveform for future brain studies.


Asunto(s)
Dopamina , Grafito , Carbono , Serotonina , Fibra de Carbono , Microelectrodos , Técnicas Electroquímicas/métodos
2.
J Neurosci ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35906070

RESUMEN

Dopamine (DA) is a critical regulator of striatal network activity and is essential for motor activation and reward-associated behaviors. Previous work has shown that DA is influenced by the reward value of food, as well as by hormonal factors implicated in the regulation of food intake and energy expenditure. Changes in striatal DA signaling also have been linked to aberrant eating patterns. Here we test the effect of leptin, an adipocyte-derived hormone involved in feeding and energy homeostasis regulation, on striatal DA release and uptake. Immunohistochemical evaluation identified leptin receptor expression throughout mouse striatum, including on striatal cholinergic interneurons and their extensive processes. Using fast-scan cyclic voltammetry, we found that leptin causes a concentration-dependent increase in evoked extracellular DA concentration ([DA]o) in dorsal striatum and nucleus accumbens (NAc) core and shell in male mouse striatal slices, and also an increase in the rate of DA uptake. Further, we found that leptin increases cholinergic interneuron excitability, and that the enhancing effect of leptin on evoked [DA]o is lost when nicotinic acetylcholine (ACh) receptors are antagonized or when examined in striatal slices from mice lacking ACh synthesis. Evaluation of signaling pathways underlying leptin's action revealed a requirement for intracellular Ca2+, and the involvement of different downstream pathways in dorsal striatum and NAc core versus NAc shell. These results provide the first evidence for dynamic regulation of DA release and uptake by leptin within brain motor and reward pathways, and highlight the involvement of cholinergic interneurons in this process.SIGNIFICANCE STATEMENTGiven the importance of striatal dopamine in reward, motivation, motor behavior and food intake, identifying the actions of metabolic hormones on dopamine release in striatal subregions should provide new insight into factors that influence dopamine-dependent motivated behaviors. We find that one of these hormones, leptin, boosts striatal dopamine release through a process involving striatal cholinergic interneurons and nicotinic acetylcholine receptors. Moreover, we find that the intracellular cascades downstream from leptin receptor activation underlying enhanced dopamine release differ among striatal subregions. Thus, we not only show that leptin regulates dopamine release, but also identify characteristics of this process that could be harnessed to alter pathological eating behaviors.

3.
Mol Psychiatry ; 26(11): 6427-6450, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33879865

RESUMEN

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.


Asunto(s)
Neuronas Dopaminérgicas , Factor 2 Eucariótico de Iniciación , Animales , Cognición , Neuronas Dopaminérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Ratones , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
4.
Eur J Neurosci ; 49(6): 794-804, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29791756

RESUMEN

Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also acts directly on dopamine axons to increase dopamine uptake by promoting dopamine transporter (DAT) surface expression, counteracting enhanced dopamine release. Here, we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nm) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR vs. AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Dopamina/metabolismo , Insulina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/farmacología , Insulina/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas Sprague-Dawley , Receptor de Insulina/efectos de los fármacos , Receptor de Insulina/metabolismo
5.
J Physiol ; 593(16): 3431-46, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25605547

RESUMEN

Historically, brain neurochemicals have been broadly classified as energetic or informational. However, increasing evidence implicates metabolic substrates and byproducts as signalling agents, which blurs the boundary between energy and information, and suggests the introduction of a new category for 'translational' substances that convey changes in energy state to information. One intriguing example is hydrogen peroxide (H2 O2 ), which is a small, readily diffusible molecule. Produced during mitochondrial respiration, this reactive oxygen species, can mediate dynamic regulation of neuronal activity and transmitter release by activating inhibitory ATP-sensitive K(+) (KATP ) channels, as well as a class of excitatory non-selective cation channels, TRPM2. Studies using ex vivo guinea pig brain slices have revealed that activity-generated H2 O2 can act via KATP channels to inhibit dopamine release in dorsal striatum and dopamine neuron activity in the substantia nigra pars compacta. In sharp contrast, endogenously generated H2 O2 enhances the excitability of GABAergic projection neurons in the dorsal striatum and substantia nigra pars reticulata by activating TRPM2 channels. These studies suggest that the balance of excitation vs. inhibition produced in a given cell by metabolically generated H2 O2 will be dictated by the relative abundance of H2 O2 -sensitive ion channel targets that receive this translational signal.


Asunto(s)
Encéfalo/metabolismo , Peróxido de Hidrógeno/metabolismo , Animales , Dopamina/metabolismo , Humanos , Canales KATP/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Receptores AMPA/metabolismo , Canales Catiónicos TRPM/metabolismo
6.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38431842

RESUMEN

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Asunto(s)
Autorreceptores , Dopamina , Ratones , Animales , Ácido gamma-Aminobutírico/farmacología , Axones/metabolismo , Cuerpo Estriado/metabolismo , Receptores de GABA-A/metabolismo , Ratones Noqueados , Homeostasis
7.
Biomolecules ; 13(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36979453

RESUMEN

Insulin crosses the blood-brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor-nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physiological states.


Asunto(s)
Cuerpo Estriado , Insulina , Acetilcolina/metabolismo , Colinérgicos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo
8.
J Neurosci ; 30(5): 1788-97, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130188

RESUMEN

PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Destreza Motora , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/metabolismo , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Transgénicos , Actividad Motora/genética
9.
J Neurosci ; 30(20): 7105-10, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484653

RESUMEN

Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.


Asunto(s)
Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/citología , Transducción de Señal/fisiología , Animales , Dopaminérgicos/farmacología , Estimulación Eléctrica/métodos , Electroquímica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas de Transferencia de Gen , Técnicas In Vitro , Proteínas Luminiscentes/genética , Masculino , Ratones , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa/métodos , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tetrodotoxina/farmacología
10.
J Neurochem ; 118(5): 721-36, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21689107

RESUMEN

ATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H(2)O(2) produced from glutamate receptor activation inhibits dopamine release via K(ATP) channels. Sources of modulatory H(2)O(2) include striatal medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H(2)O(2)/K(ATP)-channel-mediated inhibition and assessed whether modulatory K(ATP) channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a K(ATP)-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H(2)O(2) levels, revealed a time window for inhibition of 500-1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 K(ATP)-channel subunits on dopaminergic axons. Consistent with the presence of functional K(ATP) channels on dopaminergic axons, K(ATP)-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express K(ATP) channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H(2)O(2) acting at K(ATP) channels on dopaminergic axons, including a role in paired-pulse suppression.


Asunto(s)
Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Canales KATP/metabolismo , Neuronas/citología , Terminales Presinápticos/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Análisis de Varianza , Animales , Biofisica/métodos , Diazóxido/farmacología , Agonistas de Dopamina/farmacología , Estimulación Eléctrica/métodos , Electroquímica/métodos , Gliburida/farmacología , Cobayas , Peróxido de Hidrógeno/farmacología , Hipoglucemiantes/farmacología , Técnicas In Vitro , Mecamilamina/farmacología , Antagonistas Nicotínicos/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Terminales Presinápticos/efectos de los fármacos , Quinpirol/farmacología , Receptores de Droga/metabolismo , Receptores de Sulfonilureas , Tiomalatos/farmacología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
11.
J Neurochem ; 118(5): 714-20, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21689106

RESUMEN

Dopamine (DA) is an important transmitter in both motor and limbic pathways. We sought to investigate the role of D(1)-receptor activation in axonal DA release regulation in dorsal striatum using a D(1)-receptor antagonist, SKF-83566. Evoked DA release was monitored in rat striatal slices using fast-scan cyclic voltammetry. SKF-83566 caused a concentration-dependent increase in peak single-pulse evoked extracellular DA concentration, with a maximum increase of ∼ 65% in 5 µM SKF-83566. This was accompanied by a concentration-dependent increase in extracellular DA concentration clearance time. Both effects were occluded by nomifensine (1 µM), a dopamine transporter (DAT) inhibitor, suggesting that SKF-83566 acted via the DAT. We tested this by examining [(3)H]DA uptake into LLc-PK cells expressing rat DAT, and confirmed that SKF-83566 is a competitive DAT inhibitor with an IC(50) of 5.7 µM. Binding studies with [(3)H]CFT, a cocaine analog, showed even more potent action of SKF-83566 at the DAT cocaine binding site (IC(50) = 0.51 µM). Thus, data obtained using SKF-83566 as a D(1) DA-receptor antagonist may be confounded by concurrent DAT inhibition. More positively, however, SKF-83566 might be a candidate to attenuate cocaine effects in vivo because of the greater potency of this drug at the cocaine versus DA binding site of the DAT.


Asunto(s)
2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Prosencéfalo/efectos de los fármacos , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Dopamina/farmacocinética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Electroquímica/métodos , Técnicas In Vitro , Masculino , Nomifensina/farmacología , Prosencéfalo/citología , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tritio/farmacocinética , Tropanos/farmacocinética
12.
J Neurosci ; 29(20): 6568-79, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19458227

RESUMEN

Somatodendritic dopamine (DA) release in the substantia nigra pars compacta (SNc) shows a limited dependence on extracellular calcium concentration ([Ca(2+)](o)), suggesting the involvement of intracellular Ca(2+) stores. Here, using immunocytochemistry we demonstrate the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) that sequesters cytosolic Ca(2+) into the endoplasmic reticulum (ER), as well as inositol 1,4,5-triphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) in DAergic neurons. Notably, RyRs were clustered at the plasma membrane, poised for activation by Ca(2+) entry. Using fast-scan cyclic voltammetry to monitor evoked extracellular DA concentration ([DA](o)) in midbrain slices, we found that SERCA inhibition by cyclopiazonic acid (CPA) decreased evoked [DA](o) in the SNc, indicating a functional role for ER Ca(2+) stores in somatodendritic DA release. Implicating IP(3)R-dependent stores, an IP(3)R antagonist, 2-APB, also decreased evoked [DA](o). Moreover, DHPG, an agonist of group I metabotropic glutamate receptors (mGluR1s, which couple to IP(3) production), increased somatodendritic DA release, whereas CPCCOEt, an mGluR1 antagonist, suppressed it. Release suppression by mGluR1 blockade was prevented by 2-APB or CPA, indicating facilitation of DA release by endogenous glutamate acting via mGluR1s and IP(3)R-gated Ca(2+) stores. Similarly, activation of RyRs by caffeine increased [Ca(2+)](i) and elevated evoked [DA](o). The increase in DA release was prevented by a RyR blocker, dantrolene, and by CPA. Importantly, the efficacy of dantrolene was enhanced in low [Ca(2+)](o), suggesting a mechanism for maintenance of somatodendritic DA release with limited Ca(2+) entry. Thus, both mGluR1-linked IP(3)R- and RyR-dependent ER Ca(2+) stores facilitate somatodendritic DA release in the SNc.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Dendritas/metabolismo , Dopamina/metabolismo , Líquido Intracelular/metabolismo , Neuronas/citología , Animales , Compuestos de Boro/farmacología , Cadmio/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Quelantes/farmacología , Cromonas/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica , Técnicas Electroquímicas/métodos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Cobayas , Técnicas In Vitro , Indoles/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sustancia Negra/citología , Tirosina 3-Monooxigenasa/metabolismo
13.
J Neurosci ; 29(28): 9002-10, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605638

RESUMEN

Hydrogen peroxide (H(2)O(2)) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H(2)O(2) signaling, which activates ATP-sensitive potassium (K(ATP)) channels to inhibit dopamine release. However, the origin of this modulatory H(2)O(2) has been elusive. Here we addressed three possible sources of H(2)O(2) produced for rapid neuronal signaling in striatum: mitochondrial respiration, monoamine oxidase (MAO), and NADPH oxidase (Nox). Evoked dopamine release in guinea-pig striatal slices was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Using direct fluorescence imaging of H(2)O(2) and tissue analysis of ATP, we found that coapplication of rotenone (50 nM), a mitochondrial complex I inhibitor, and succinate (5 mM), a complex II substrate, limited H(2)O(2) production, but maintained tissue ATP content. Strikingly, coapplication of rotenone and succinate also prevented glutamate-dependent regulation of dopamine release, implicating mitochondrial H(2)O(2) in release modulation. In contrast, inhibitors of MAO or Nox had no effect on dopamine release, suggesting a limited role for these metabolic enzymes in rapid H(2)O(2) production in the striatum. These data provide the first demonstration that respiring mitochondria are the primary source of H(2)O(2) generation for dynamic neuronal signaling.


Asunto(s)
Encéfalo/citología , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Neuronas/ultraestructura , Transducción de Señal/fisiología , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Dopamina/análisis , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Electroquímica/métodos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Gliburida/farmacología , Cobayas , Hipoglucemiantes/farmacología , Técnicas In Vitro , Mitocondrias/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Rotenona/farmacología , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Ácido Succínico/farmacología , Tetrodotoxina/farmacología
14.
J Neurochem ; 114(6): 1781-91, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626557

RESUMEN

Dystonia is a neurological disorder characterized by involuntary movements. We examined striatal dopamine (DA) function in hyperactive transgenic (Tg) mice generated as a model of dystonia. Evoked extracellular DA concentration was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry in striatal slices from non-Tg mice, Tg mice with a positive motor phenotype, and phenotype-negative Tg littermates. Peak single-pulse evoked extracellular DA concentration was significantly lower in phenotype-positive mice than in non-Tg or phenotype-negative mice, but indistinguishable between non-Tg and phenotype-negative mice. Phenotype-positive mice also had higher functional D2 DA autoreceptor sensitivity than non-Tg mice, which would be consistent with lower extracellular DA concentration in vivo. Multiple-pulse (phasic) stimulation (five pulses, 10-100 Hz) revealed an enhanced frequency dependence of evoked DA release in phenotype-positive versus non-Tg or phenotype-negative mice, which was exacerbated when extracellular Ca(2+) concentration was lowered. Enhanced sensitivity to phasic stimulation in phenotype-positive mice was reminiscent of the pattern seen with antagonism of nicotinic acetylcholine receptors. Consistent with a role for altered cholinergic regulation, the difference in phasic responsiveness among groups was lost when nicotinic receptors were blocked by mecamylamine. Together, these data implicate compromised DA release regulation, possibly from cholinergic dysfunction, in the motor symptoms of this dystonia model.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/metabolismo , Animales , Autorreceptores/agonistas , Autorreceptores/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Distonía/genética , Distonía/fisiopatología , Estimulación Eléctrica , Técnicas In Vitro , Ratones , Ratones Transgénicos , Antagonistas Nicotínicos/farmacología , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiología
15.
Neuroscience ; 422: 1-11, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669362

RESUMEN

Dystonia is a disabling neurological syndrome characterized by abnormal movements and postures that result from intermittent or sustained involuntary muscle contractions; mutations of DYT1/TOR1A are the most common cause of childhood-onset, generalized, inherited dystonia. Patient and mouse model data strongly support dysregulation of the nigrostriatal dopamine neurotransmission circuit in the presence of the DYT1-causing mutation. To determine striatal medium spiny neuron (MSN) cell-autonomous and non-cell autonomous effects relevant to dopamine transmission, we created a transgenic mouse in which expression of mutant torsinA in forebrain is restricted to MSNs. We assayed electrically evoked and cocaine-enhanced dopamine release and locomotor activity, dopamine uptake, gene expression of dopamine-associated neuropeptides and receptors, and response to the muscarinic cholinergic antagonist, trihexyphenidyl. We found that over-expression of mutant torsinA in MSNs produces complex cell-autonomous and non-cell autonomous alterations in nigrostriatal dopaminergic and intrastriatal cholinergic function, similar to that found in pan-cellular DYT1 mouse models. These data introduce targets for future studies to identify which are causative and which are compensatory in DYT1 dystonia, and thereby aid in defining appropriate therapies.


Asunto(s)
Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/fisiología , Destreza Motora/fisiología , Sustancia Negra/metabolismo , Animales , Cocaína/farmacología , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Estimulación Eléctrica , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Mutación , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Trihexifenidilo/antagonistas & inhibidores , Trihexifenidilo/farmacología
16.
Antioxid Redox Signal ; 9(2): 219-31, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17115944

RESUMEN

The role of reactive oxygen species (ROS) as signaling agents is increasingly appreciated. Studies of ROS functions in the central nervous system, however, are only in their infancy. Using fast-scan cyclic voltammetry and fluorescence imaging in brain slices, the authors discovered that hydrogen peroxide (H2O2) is an endogenous regulator of dopamine release in the dorsal striatum. Given the key role of dopamine in motor, reward, and cognitive pathways, regulation by H2O2 has implications for normal dopamine function, as well as for dysfunction of dopamine transmission. In this review, data are summarized to show that H2O2 is a diffusible messenger in the striatum, generated downstream from glutamate receptor activation, and an intracellular signal in dopamine neurons of the substantia nigra, generated during normal pacemaker activity. The mechanism by which H2O2 inhibits dopamine release and dopamine cell activity is activation of ATP-sensitive K+ (KATP) channels. Characteristics of the neuronal and glial antioxidant networks required to permit H2O2 signaling, yet prevent oxidative damage, are also considered. Lastly, estimates of physiological H2O2 levels are discussed, and strengths and limitations of currently available methods for H2O2 detection, including fluorescence imaging using dichlorofluorescein (DCF) and the next generation of fluorescent probes, are considered.


Asunto(s)
Adenosina Trifosfato/química , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Peróxido de Hidrógeno/farmacología , Potasio/química , Animales , Antioxidantes/metabolismo , Dopamina/química , Fluoresceínas/farmacología , Humanos , Microscopía Fluorescente , Mitocondrias/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal
17.
ACS Chem Neurosci ; 8(2): 310-319, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28177213

RESUMEN

Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line ("Ai32" mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Dopamina/metabolismo , Estimulación Eléctrica/métodos , Optogenética , Acetilcolina/metabolismo , Análisis de Varianza , Animales , Área Bajo la Curva , Channelrhodopsins , Cuerpo Estriado/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Técnicas Electroquímicas , Femenino , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mecamilamina/farmacología , Ratones , Ratones Transgénicos , Microelectrodos , Mutación/genética , Antagonistas Nicotínicos/farmacología , Transducción Genética
18.
Compr Physiol ; 7(1): 235-252, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-28135005

RESUMEN

Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.


Asunto(s)
Dendritas/metabolismo , Neurotransmisores/metabolismo , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Dopamina/metabolismo , Exocitosis , Oxitocina/metabolismo , Vasopresinas/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009764

RESUMEN

Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.


Asunto(s)
Cuerpo Celular/metabolismo , Dendritas/metabolismo , Dopamina/metabolismo , Exocitosis/fisiología , Mesencéfalo/citología , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Calcio/metabolismo , Humanos
20.
ACS Chem Neurosci ; 6(6): 832-7, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-25797409

RESUMEN

Tobacco products influence striatal dopamine (DA) release primarily through the actions of nicotine, an agonist of nicotinic acetylcholine receptors (nAChR). Gutkha is a smokeless tobacco product that contains not only nicotine, but also includes the habit-forming areca nut and other plant-based constituents that contribute muscarinic acetylcholine receptor (mAChR) agonists and other cholinergic agents. Thus, the net influence of the cholinergic agents in gutkha on striatal DA release is difficult to predict. This study investigated the influence of gutkha extract on evoked DA release in mouse striatal slices using fast-scan cyclic voltammetry. The potency of a given concentration of nicotine in the gutkha extract was found to be significantly lower than that of a comparable concentration of nicotine alone. Atropine, a mAChR antagonist, increased the potency of gutkha-associated nicotine; however, other experiments suggested that this was mediated in part by direct effects of atropine at nAChRs. Overall, these results suggest that the unique constituents of gutkha work together to oppose the influence of gutkha-associated nicotine on evoked striatal DA release.


Asunto(s)
Colinérgicos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Tabaco sin Humo , Animales , Areca , Atropina/farmacología , Masculino , Ratones Endogámicos C57BL , Nicotina/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA