RESUMEN
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm, affects the mouth and throat, and accounts for 90 % of oral cancers. Considering the associated morbidity with neck dissections and the limitation of existing therapeutic agents, the discovery and development of new anticancer drugs/drug candidates for oral cancer treatment are of the utmost need. In this context, reported here is the identification of fluorinated 2styryl 4(3H)-quinazolinone as a promising hit for oral cancer. Preliminary studies indicate that the compound blocks the transition of G1 to S phase, thereby leading to arrest in the G1/S phase. Subsequent RNA-seq analysis revealed that the compound induces the activation of molecular pathways involved in apoptosis (such as TNF signalling through NF-κB, p53 pathways) and cell differentiation and suppresses the pathways of cellular growth and development (such as KRAS signaling) in CAL-27 cancer cells. It is noted that identified hit complies with a favorable range of ADME properties as per the computational analysis.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Transducción de SeñalRESUMEN
Oral cancer (OC) stands as a prominent cause of global mortality. Despite numerous efforts in recent decades, the efficacy of novel therapies to extend the lifespan of OC patients remains disappointingly low. Consequently, the demand for innovative therapeutic agents has become all the more pressing. In this context, we present our work on the design and synthesis of twenty-five novel quinoxaline-tethered imidazopyri(mi)dine derivatives. This was followed by comprehensive investigations into the impact of these molecules on the OC cell line. The in vitro cytotoxicity studies performed in CAL-27 and normal oral epithelial (NOE) cell lines revealed that some of the synthesized molecules like 12d have potent antiproliferative activity specifically towards OC cells with an IC50 of 0.79 µM and show negligible cytotoxicity over NOE cells. Further, 12d arrested cell growth in the S phase of the cell cycle and induced cell death by early apoptosis. The in silico studies validated that 12d binds to the activator binding site on pyruvate kinase M2 (PKM2) overexpressed in OC while the lactate dehydrogenase (LDH)-coupled enzyme assay established 12d as a potent PKM2 activator with an AC50 of 0.6 nM. Hence, this study provides fruitful evidence for the designed compounds as anticancer agents against OC.