RESUMEN
The imidazolinone group of herbicides generally work for controlling weeds by limiting the synthesis of the aceto-hydroxy-acid enzyme, which is linked to the biosynthesis of branched-chain amino acids in plant cells. The herbicide imazethapyr is from the class and the active ingredient of this herbicide is the same as other herbicides Contour, Hammer, Overtop, Passport, Pivot, Pursuit, Pursuit Plus, and Resolve. It is commonly used for controlling weeds in soybeans, alfalfa hay, corn, rice, peanuts, etc. Generally, the herbicide imazethapyr is safe and non-toxic for target crops and environmentally friendly when it is used at low concentration levels. Even though crops are extremely susceptible to herbicide treatment at the seedling stage, there have been no observations of its higher dose on lentils (Lens culinaris Medik.) at that stage. The current study reports the consequence of imazethapyr treatment on phenolic acid and flavonoid contents along with the antioxidant activity of the phenolic extract. Imazethapyr treatment significantly increased the activities of several antioxidant enzymes, including phenylalanine ammonia lyase (PAL), phenol oxidase (POD), glutathione reductase (GR), and glutathione-s-transferase (GST), in lentil seedlings at doses of 0 RFD, 0.5 RFD, 1 RFD, 1.25 RFD, 1.5 RFD, and 2 RFD. Application of imazethapyr resulted in the 3.2 to 26.31 and 4.57-27.85% increase in mean phenolic acid and flavonoid content, respectively, over control. However, the consequent fold increase in mean antioxidant activity under 2, 2- diphenylpicrylhdrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay system was in the range of 1.17-1.85 and 1.47-2.03%. Mean PAL and POD activities increased by 1.63 to 3.66 and 1.71 to 3.35-fold, respectively, in agreement with the rise in phenolic compounds, indicating that these enzyme's activities were modulated in response to herbicide treatment. Following herbicide treatments, the mean thiol content also increased significantly in corroboration with the enhancement in GR activity in a dose-dependent approach. A similar increase in GST activity was also observed with increasing herbicide dose.
Asunto(s)
Herbicidas , Lens (Planta) , Fenol , Antioxidantes , Plantones , Fenoles , Productos Agrícolas , Flavonoides , Herbicidas/farmacología , GlutatiónRESUMEN
Quick leaching of urea fertilizer encourages different coatings, but achieving a stable coating without toxic linkers is still challenging. Here, the naturally abundant bio-polymer, i.e., starch, has been groomed to form a stable coating through phosphate modification and the support of eggshell nanoparticles (ESN) as a reinforcement agent. The ESN offers a calcium ion binding site for the phosphate to cause bio-mimetic folding. This coating retains hydrophilic ends in the core and gives an excellent hydrophobic surface (water contact angle 123°). Further, the phosphorylated starch+ESN led the coating to release only â¼30 % of the nutrient in the initial ten days and sustained for up to 60 days to show â¼90 % release. The stability of the coating has been attributed to its resistance to major soil factors viz., acidity and amylase degradation. The ESN also increases elasticity, cracking control, and self-repairing capacity by serving as buffer micro-bots. The coated urea enhanced the yield of rice grain by â¼10%.
Asunto(s)
Almidón , Urea , Preparaciones de Acción Retardada/química , Urea/química , Almidón/química , Suelo , Fertilizantes/análisis , FosfatosRESUMEN
Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.
RESUMEN
Seventy-one genotypes of sugarcane from diverse agro-climatic zones of India viz. peninsular, northwest, north-central and eastern zones, were screened for their tolerance to high temperature stress based on the damage to leaf biomass i.e. necrosis of leaf-tips and margins, and rolling of leaves. Nine selected genotypes showing variable response to heat injury were tested for activity pattern of isoforms of two H2O2-scavenging enzymes; ascorbate peroxidase (APX) and catalase (CAT), under high temperature induced oxidative stress. Changes in the activity of APX and CAT isozymes in leaves corresponded to the level of tolerance of genotypes towards heat injury which was substantiated by the highly negative correlation coefficients of heat injury levels of leaves vs. integrated density of APX and CAT isozyme bands. This indicated that the criteria of higher expression of CATs' andAPXs', the two major reactive oxygen species scavenging proteins in leaves may be used to screen large seedling populations and germplasm for high temperature tolerance.
Asunto(s)
Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Calor , Estrés Oxidativo , Saccharum/enzimología , Peróxido de Hidrógeno/metabolismo , India , Saccharum/genéticaRESUMEN
Nitrogen fertilizers, namely urea, are prone to leaching that causes inefficiency in crop production and environmental pollution; hence porous particles were explored for slow release. Nevertheless, discrete particles add cost; therefore, jute cellulose has been tested as twine to tether silica together for reusability. On the other hand, silica serves as an exoskeleton to give pore memory property to cellulose, which otherwise is susceptible to loss of porosity during irrigation. The composite shows â¼70% more absorption capacity in the fifth cycle than the fiber without silica coating. The urea release kinetics shows only <1/3 and 3/4 of urea release from the jute-silica composite compared to naked porous silica and cellulose, respectively. The slow and sustained release of fertilizer from the composite results in a continuous increase in the chlorophyll content in rice crops.
RESUMEN
Marker-assisted selection (MAS) has been widely used in the last few decades in plant breeding programs for the mapping and introgression of genes for economically important traits, which has enabled the development of a number of superior cultivars in different crops. In sugarcane, which is the most important source for sugar and bioethanol, marker development work was initiated long ago; however, marker-assisted breeding in sugarcane has been lagging, mainly due to its large complex genome, high levels of polyploidy and heterozygosity, varied number of chromosomes, and use of low/medium-density markers. Genomic selection (GS) is a proven technology in animal breeding and has recently been incorporated in plant breeding programs. GS is a potential tool for the rapid selection of superior genotypes and accelerating breeding cycle. However, its full potential could be realized by an integrated approach combining high-throughput phenotyping, genotyping, machine learning, and speed breeding with genomic selection. For better understanding of GS integration, we comprehensively discuss the concept of genetic gain through the breeder's equation, GS methodology, prediction models, current status of GS in sugarcane, challenges of prediction accuracy, challenges of GS in sugarcane, integrated GS, high-throughput phenotyping (HTP), high-throughput genotyping (HTG), machine learning, and speed breeding followed by its prospective applications in sugarcane improvement.
RESUMEN
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.