RESUMEN
The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.
Asunto(s)
Carboxiliasas , Lupus Eritematoso Sistémico , Macrófagos , Ratones Noqueados , Succinatos , Animales , Lupus Eritematoso Sistémico/inmunología , Ratones , Humanos , Femenino , Macrófagos/inmunología , Succinatos/farmacología , Enfermedades Cardiovasculares/inmunología , Biomarcadores , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Adulto , Masculino , Modelos Animales de Enfermedad , Persona de Mediana Edad , Citocinas/metabolismo , Receptor Toll-Like 7/metabolismo , HidroliasasRESUMEN
Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1ß, IL-6, IL-8, IL-12 p40, CCL2, IFN-ß, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.
Asunto(s)
Factor Estimulante de Colonias de Macrófagos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Antiinflamatorios/metabolismoRESUMEN
BACKGROUND: Hidradenitis suppurativa (HS) is an inflammatory chronic skin disorder of unknown etiology characterized by inflamed abscess-like nodules and boils resulting in sinus tract formation, tissue scarring, and massive infiltration of neutrophils. Multiple lines of evidence have highlighted the potential association between alterations in the Notch pathway and HS pathogenesis, but the mechanisms remain incompletely characterized. OBJECTIVE: We aimed to elucidate the role of neutrophil extracellular traps in Notch-γ-secretase signaling. METHODS: Twenty-six HS lesional tissues, primary HS macrophages, and skin fibroblasts were interrogated by quantitative PCR, Western blot, and ELISA analyses. γ-Secretase and TNF-α converting enzyme activities were measured in HS skin lesions, macrophages, and skin fibroblasts. Immunofluorescence and RNAscope analyses were performed in HS and control skin. RESULTS: A prominent presence of Notch ligands, Delta-like ligand 4 (DLL4), and Jagged (JAG) 2 were detected at the protein and mRNA levels in HS skin lesion compared to control. Levels of DLL4, JAG1, citrullinated histone H3 DNA, and γ-secretase activity correlated with HS disease severity. Additionally, significantly elevated levels of Notch ligands and γ-secretase activity were found in dissected sinus tracts compared to the rest of HS tissue. Immunofluorescence microscopy of HS skin lesions revealed activation of Notch-1 signaling in macrophages and skin fibroblasts. Neutrophil extracellular traps (NETs) purified from HS patients displayed elevated levels of DLL4. HS NETs activated the Notch pathway in macrophages and dermal fibroblasts isolated from HS patients. HS skin fibroblasts displayed elevated levels of CD90 and DPP4 in association with increased migratory capacity and Notch activation. Inhibition of Notch decreased migratory capacity and profibrotic markers in HS fibroblasts. CONCLUSION: These data support a pathogenic connection between NETs, Notch-γ-secretase activation, and the release of profibrotic molecules that promote dysregulation of macrophages and skin fibroblasts in HS. Unveiling the relevance of these molecular events not only expands our understanding of HS but also opens new venues for the development of targeted therapies to address the fibrotic complications of advanced stages of HS.
RESUMEN
Obesity is a chronic inflammatory disease associated with adipose tissue macrophage (ATM) activation. ATMs from lean mice contribute to tissue homeostasis by their M2-oriented polarization, whereas obesity leads to an increase of M1 inflammatory ATMs that underlies obesity-related metabolic disorders. In humans, studies characterizing ATMs and their functional status are limited. Here we investigated ATM phenotype in visceral (VAT) and subcutaneous (SAT) adipose tissue from healthy lean and obese individuals using two molecules previously identified as markers of M1-like and M2-like/tissue-resident macrophages, the C-type lectin CLEC5A and the scavenger receptor CD163L1, respectively. CD163L1 was expressed by the majority of ATMs, and CD163L1+ ATM density was greater with respect to cells expressing the pan-macrophage markers CD68 or CD11b. ATM counts in SAT, but not in VAT, increased in obese compared to lean individuals, measured with the three markers. Accordingly, CD163L1, CD68 and ITGAM gene expression was significantly enhanced in obese with respect to control individuals only in SAT. CLEC5A+ ATMs had a proinflammatory profile and were abundant in the lean VAT, but their density diminished in obesity. The only ATM subset that increased its counts in the obese VAT had a mixed M1-like (CD11c+ CD163- CD209- ) and M2-like (CLEC5A- CD206+ ) phenotype. ATM expansion was dominated by a subset of M2-like macrophages (CD11c- CLEC5A- CD163+ CD206+ CD209+ ) in the obese SAT, with a minor contribution of a CD11c+ CLEC5A- ATM subpopulation. Thus, both SAT and VAT seems to limit inflammation during obesity by differentially altering their ATM subset composition.
Asunto(s)
Grasa Intraabdominal/citología , Macrófagos/citología , Obesidad , Grasa Subcutánea/citología , Humanos , Inflamación , Lectinas Tipo C , Activación de Macrófagos , Glicoproteínas de Membrana , Obesidad/inmunología , Receptores de Superficie Celular , Receptores DepuradoresRESUMEN
The evolution of hematophagy involves a series of adaptations that allow blood-feeding insects to access and consume blood efficiently while managing and circumventing the host's hemostatic and immune responses. Mosquito, and other insects, utilize salivary proteins to regulate these responses at the bite site during and after blood feeding. We investigated the function of Anopheles gambiae salivary apyrase (AgApyrase) in regulating hemostasis in the mosquito blood meal and in Plasmodium transmission. Our results demonstrate that salivary apyrase, a known inhibitor of platelet aggregation, interacts with and activates tissue plasminogen activator, facilitating the conversion of plasminogen to plasmin, a human protease that degrades fibrin and facilitates Plasmodium transmission. We show that mosquitoes ingest a substantial amount of apyrase during blood feeding, which reduces coagulation in the blood meal by enhancing fibrin degradation and inhibiting platelet aggregation. AgApyrase significantly enhanced Plasmodium infection in the mosquito midgut, whereas AgApyrase immunization inhibited Plasmodium mosquito infection and sporozoite transmission. This study highlights a pivotal role for mosquito salivary apyrase for regulation of hemostasis in the mosquito blood meal and for Plasmodium transmission to mosquitoes and to the mammalian host, underscoring the potential for strategies to prevent malaria transmission.
Asunto(s)
Anopheles , Apirasa , Hemostasis , Malaria , Animales , Apirasa/metabolismo , Anopheles/parasitología , Hemostasis/efectos de los fármacos , Malaria/transmisión , Malaria/parasitología , Agregación Plaquetaria/efectos de los fármacos , Humanos , Activador de Tejido Plasminógeno/metabolismo , Proteínas de Insectos/metabolismo , Femenino , Ratones , Fibrinolisina/metabolismo , Saliva/parasitología , Fibrina/metabolismo , EsporozoítosRESUMEN
Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.
RESUMEN
Mosquito salivary proteins play a crucial role in regulating hemostatic responses at the bite site during blood feeding. In this study, we investigate the function of Anopheles gambiae salivary apyrase (AgApyrase) in Plasmodium transmission. Our results demonstrate that salivary apyrase interacts with and activates tissue plasminogen activator, facilitating the conversion of plasminogen to plasmin, a human protein previously shown to be required for Plasmodium transmission. Microscopy imaging shows that mosquitoes ingest a substantial amount of apyrase during blood feeding which reduces coagulation in the blood meal by enhancing fibrin degradation and inhibiting platelet aggregation. Supplementation of Plasmodium infected blood with apyrase significantly enhanced Plasmodium infection in the mosquito midgut. In contrast, AgApyrase immunization inhibited Plasmodium mosquito infection and sporozoite transmission. This study highlights a pivotal role for mosquito salivary apyrase for regulation of hemostasis in the mosquito blood meal and for Plasmodium transmission to mosquitoes and to the mammal host, underscoring the potential for new strategies to prevent malaria transmission.
RESUMEN
Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis-associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications - TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Humanos , Animales , Macrófagos , Monocitos/patología , Receptores de IgG/genética , Inmunoglobulina GRESUMEN
The orphan nuclear receptor Nur77 is involved in diverse cellular processes such as inflammation, proliferation, differentiation and survival. Stimuli like lipopolysaccharide (LPS) and tumor necrosis factor (TNF) increase Nur77 expression in human and murine macrophages, and it has been proposed that Nur77 plays a major role in dampening the inflammatory response. Here, we evaluated the expression and function of Nur77 in human anti-inflammatory and pro-inflammatory macrophages derived from blood monocytes cultured with macrophage colony-stimulating factor (M-MDMs) or granulocyte/macrophage colony-stimulating factor (GM-MDMs), respectively. Nur77 mRNA expression was significantly enhanced in M-MDMs compared with GM-MDMs, both constitutively and upon exposure to Toll-like receptor (TLR)2, 3, and 4 ligands. Nur77 activation with the agonist Cytosporone B (CsnB) significantly suppressed the production of TNF, interleukin (IL)-1ß, IL-6, and IL-8 in GM-MDMs stimulated with LPS. In contrast, it tended to enhance the production of the anti-inflammatory cytokine IL-10. This effect was associated with reduced NF-κB p65 nuclear translocation. Similarly, Nur77 knockdown enhanced TNF production in GM-MDMs. CsnB effectively stimulated the transactivation activity of Nur77 in M-MDMs, but it did not alter cytokine synthesis or p65 nuclear translocation. However, Nur77 seemed to have a role in maintaining the anti-inflammatory profile of M-MDMs, since Nur77-deficient M-MDMs constitutively produced higher levels of TNF transcripts. Thus, in the absence of exogenous agonists, Nur77 activity favors the anti-inflammatory function of M-MDMs, whereas agonistic activation of this receptor preferentially drives attenuation of inflammation in inflammatory macrophages.
Asunto(s)
Macrófagos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Fenilacetatos , Humanos , Citocinas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Fenilacetatos/farmacologíaRESUMEN
OBJECTIVE: Itaconic acid, a Krebs cycle-derived immunometabolite, is synthesized by myeloid cells in response to danger signals to control inflammasome activation, type I interferon (IFN) responses, and oxidative stress. As these pathways are dysregulated in systemic lupus erythematosus (SLE), we investigated the role of an itaconic acid derivative in the treatment of established murine lupus. METHODS: Female (NZW × NZB)F1 lupus-prone mice were administered 4-octyl itaconate (4-OI) or vehicle starting after clinical onset of disease (30 weeks of age) for 4 weeks (n = 10 mice /group). At 34 weeks of age (peak disease activity), animals were euthanized, organs and serum were collected, and clinical, metabolic, and immunologic parameters were evaluated. RESULTS: Proteinuria, kidney immune complex deposition, renal scores of severity and inflammation, and anti-RNP autoantibodies were significantly reduced in the 4-OI treatment group compared to the vehicle group. Splenomegaly decreased in the 4-OI group compared to vehicle, with decreases in activation markers in innate and adaptive immune cells, increases in CD8+ T cell numbers, and inhibition of JAK1 activation. Gene expression analysis in splenocytes showed significant decreases in type I IFN and proinflammatory cytokine genes and increased Treg cell-associated markers in the 4-OI group compared to the vehicle group. In human control and lupus myeloid cells, 4-OI in vitro treatment decreased proinflammatory responses and B cell responses. CONCLUSIONS: These results support targeting immunometabolism as a potentially viable approach in autoimmune disease treatment, with 4-OI displaying beneficial roles attenuating immune dysregulation and organ damage in lupus.
Asunto(s)
Lupus Eritematoso Sistémico , Ratones , Femenino , Humanos , Animales , Recién Nacido , Ratones Endogámicos NZB , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico/tratamiento farmacológico , Anticuerpos AntinuclearesRESUMEN
Hidradenitis suppurativa (HS), also known as acne inversa, is a debilitating inflammatory skin disorder that is characterized by nodules that lead to the development of connected tunnels and scars as it progresses from Hurley stages I to III. HS has been associated with several autoimmune diseases, including inflammatory bowel disease and spondyloarthritis. We previously reported dysregulation of humoral immune responses in HS, characterized by elevated serum total IgG, B-cell activation, and antibodies recognizing citrullinated proteins. In this study, we characterized IgG autoreactivity in HS sera and lesional skin compared with those in normal healthy controls using an array-based high-throughput autoantibody screening. The Cy3-labeled anti-human assay showed the presence of autoantibodies against nuclear antigens, cytokines, cytoplasmic proteins, extracellular matrix proteins, neutrophil proteins, and citrullinated antigens. Most of these autoantibodies were significantly elevated in stages IIâIII in HS sera and stage III in HS skin lesions compared with those of healthy controls. Furthermore, immune complexes containing both native and citrullinated versions of antigens can activate M1 and M2 macrophages to release proinflammatory cytokines such as TNF-α, IL-8, IL-6, and IL-12. Taken together, the identification of specific IgG autoantibodies that recognize circulating and tissue antigens in HS suggests an autoimmune mechanism and uncovers putative therapeutic targets.
Asunto(s)
Hidradenitis Supurativa , Antígenos , Autoanticuerpos , Citocinas/metabolismo , Hidradenitis Supurativa/diagnóstico , Humanos , Inmunoglobulina G , Macrófagos/metabolismo , Índice de Severidad de la EnfermedadRESUMEN
Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state. We expose M1 macrophages to the acellular fraction of tuberculous pleural effusions (TB-PEs) and find lower glycolytic activity, accompanied by elevated levels of OXPHOS and bacillary load, compared to controls. The eicosanoid fraction of TB-PE drives these metabolic alterations. HIF-1α stabilization reverts the effect of TB-PE by restoring M1 metabolism. Furthermore, Mtb-infected mice with stabilized HIF-1α display lower bacillary loads and a pronounced M1-like metabolic profile in alveolar macrophages (AMs). Collectively, we demonstrate that lipids from a TB-associated microenvironment alter the M1 macrophage metabolic reprogramming by hampering HIF-1α functions, thereby impairing control of Mtb infection.