Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Molecules ; 24(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991675

RESUMEN

The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, but started to be generated when pH of the moromi decreased to about 4.9-at the same time, the levels of ethanol, urea and citrulline increased significantly. Most EC was formed during raw soy sauce hot extraction (40.6%) and sterilization (42.9%) stages. The EC content exhibited the highest correlation with ethanol throughout the whole production process (R = 0.97). The simulation soy sauce produced in laboratory led the same conclusion-moreover, the contents of EC, ethanol and citrulline were higher in soy sauce fermented at 30 °C than in soy sauce fermented at 15 °C. Extraction of raw soy sauce by squeezing contributed little to EC formation. Further research showed that citrulline and ethanol led to significant increases in EC levels in raw soy sauce upon heating. These results indicate that ethanol and citrulline are two critical precursors of EC and that EC is mainly formed during the heat treatment stage of soy sauce.


Asunto(s)
Análisis de los Alimentos , Alimentos de Soja/análisis , Uretano/análisis , Citrulina/análisis , Citrulina/química , Etanol/análisis , Etanol/química , Urea/análisis , Urea/química , Uretano/química
2.
J Food Sci Technol ; 56(10): 4404-4416, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31686672

RESUMEN

Vacuum impregnation (VI) has been recognized as a promising tool for the introduction of solutes into the internal structure of some porous food products. The enrichment of minimally processed potatoes with aromatic compounds could represent an interesting method for product innovation. This study was aimed at applying VI with rosemary essential oil on a minimally processed potato product in order to obtain an innovative fresh-cut potato product, and to evaluate its influence on the physico-chemical, sensorial and microbiological properties of potato sticks during refrigerated storage and after frying. A pressure of 60 mbar was applied for 30 min followed by a relaxation time at atmospheric pressure of 30 min to potato sticks immersed in rosemary oil solutions in concentration between 0 and 12%. Prepared samples were packed and stored at 4 °C for 14 days. Analytical determinations were carried out on the fresh and fried product. The weight gain of potatoes promoted by VI was in the range of 6-14%, depending on the concentration of rosemary essential oil. The rosemary essential oil concentration gradients of impregnated potato sticks were detected by GC analysis and sensorial test, evidencing their persistency during storage and after frying. The treatment seemed to improve microbiological stability, not affecting the texture, moisture, but slightly deteriorating the product color. Results obtained in the present study confirm the potentiality of VI for fresh products innovation.

3.
Food Microbiol ; 68: 61-70, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28800826

RESUMEN

The main aim of this work was to evaluate, at pilot scale in an industrial environment, the effects of the biocontrol agent Lactococcus lactis CBM21 and thyme essential oil compared to chlorine, used in the washing step of fresh-cut lamb's lettuce, on the microbiota and its changes in relation to the time of storage. The modification of the microbial population was studied through pyrosequencing in addition to the traditional plate counts. In addition, the volatile molecule and sensory profiles were evaluated during the storage. The results showed no significant differences in terms of total aerobic mesophilic cell loads in relation to the washing solution adopted. However, the pyrosequencing data permitted to identify the genera and species able to dominate the spoilage associations over storage in relation to the treatment applied. Also, the analyses of the volatile molecule profiles of the samples during storage allowed the identification of specific molecules as markers of the spoilage for each different treatment. The sensory analyses after 3 and 5 days of storage showed the preference of the panelists for samples washed with the combination thyme EO and the biocontrol agent. These samples were preferred for attributes such as flavor, acceptability and overall quality. These results highlighted the effect of the innovative washing solutions on the quality of lettuce through the shift of microbiota towards genera and species with lower potential in decreasing the sensory properties of the product.


Asunto(s)
Bacterias/efectos de los fármacos , Lactococcus lactis/fisiología , Lactuca/microbiología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Thymus (Planta)/química , Verduras/microbiología , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodiversidad , Contaminación de Alimentos/prevención & control , Aceites Volátiles/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación
4.
Food Microbiol ; 47: 74-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25583340

RESUMEN

Outbreaks of food-borne disease associated with the consumption of fresh and minimally processed fruits and vegetables have increased dramatically over the last few years. Traditional chemical sanitizers are unable to completely eradicate or kill the microorganisms on fresh produce. These conditions have stimulated research to alternative methods for increasing food safety. The use of protective cultures, particularly lactic acid bacteria (LAB), has been proposed for minimally processed products. However, the application of bioprotective cultures has been limited at the industrial level. From this perspective, the main aims of this study were to select LAB from minimally processed fruits and vegetables to be used as biocontrol agents and then to evaluate the effects of the selected strains, alone or in combination with natural antimicrobials (2-(E)-hexenal/hexanal, 2-(E)-hexenal/citral for apples and thyme for lamb's lettuce), on the shelf-life and safety characteristics of minimally processed apples and lamb's lettuce. The results indicated that applying the Lactobacillus plantarum strains CIT3 and V7B3 to apples and lettuce, respectively, increased both the safety and shelf-life. Moreover, combining the selected strains with natural antimicrobials produced a further increase in the shelf-life of these products without detrimental effects on the organoleptic qualities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbiología de Alimentos , Inocuidad de los Alimentos , Lactobacillus/fisiología , Lactuca/microbiología , Malus/microbiología , Monoterpenos Acíclicos , Antiinfecciosos/farmacología , Antibiosis , Escherichia coli/crecimiento & desarrollo , Hexobarbital/farmacología , Ácido Láctico , Lactobacillus/crecimiento & desarrollo , Lactobacillus/aislamiento & purificación , Lacticaseibacillus casei/crecimiento & desarrollo , Lacticaseibacillus casei/aislamiento & purificación , Lacticaseibacillus casei/fisiología , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/fisiología , Listeria monocytogenes/crecimiento & desarrollo , Monoterpenos/farmacología , Salmonella enteritidis/crecimiento & desarrollo , Thymus (Planta)
5.
J Sci Food Agric ; 95(11): 2252-63, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25271150

RESUMEN

BACKGROUND: Pig rennet is traditionally used in Pecorino di Farindola cheese. In this study, different Pecorino cheeses obtained using calf, kid and pig rennets were compared in terms of fatty acids, volatile molecule profile, texture and sensory properties during ripening. RESULTS: The rennet type influenced the fatty acid composition of cheeses, though palmitic, myristic and oleic acids were always predominant. The analysis of volatiles by SPME-GC/MS showed that Pecorino from calf rennet, at the end of ripening, was the least 'evolved' in terms of volatile profile. SPME-GC/MS analysis revealed that cheeses from calf rennet showed the slowest accumulation of free fatty acids over ripening time. Volatile data permitted the differentiation of cheese samples ripened from 30 to 180 days according to the rennet used. Texture analysis differentiated cheeses made with pig and calf rennet from those made with kid rennet, which were less hard and more elastic than the former. Also sensory analysis differentiated cheese samples on the basis of rennet type, and cheeses made with pig rennet showed the lowest elasticity, bitter taste and fruity and hay flavour intensities. CONCLUSION: Pig rennet is fundamental to determine the quality parameters of Pecorino di Farindola cheese and could be used to impart peculiar quality features to ewe's milk cheeses.


Asunto(s)
Queso/análisis , Quimosina , Elasticidad , Ácidos Grasos/análisis , Manipulación de Alimentos/métodos , Gusto , Compuestos Orgánicos Volátiles/análisis , Animales , Queso/clasificación , Queso/normas , Ácidos Grasos no Esterificados/análisis , Aromatizantes/análisis , Humanos , Rumiantes , Porcinos
6.
Heliyon ; 10(11): e32342, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947460

RESUMEN

This study investigates the potential of yacon (Smallanthus sonchifolius) juice for the development of prebiotic-rich organic apple-based snacks. Yacon syrup, primarily composed of fructan, inulin, fructooligosaccharides (FOS), and free sugars, represents a promising nutraceutical product. Its great potential in food processing, particularly as an innovative source of prebiotics, has been demonstrated both in vitro and in vivo since it is fermented specifically by lactobacilli and bifidobacteria. Our objective was to explore the feasibility of employing vacuum impregnation process to incorporate yacon juice into organic apples, followed by hot air drying for the formulation of dried organic apple-based snacks with health-enhancing attributes. We assessed the prebiotic and physicochemical characteristics of the impregnated snacks, also considering 50 days of storage at room temperature. Vacuum impregnation and air drying produced dried apple slices impregnated with yacon juice with good quality and stability. Higher levels of fructan (16-fold difference compared to non-impregnated apples) in the apple slices increased their prebiotic potential, promoting the growth and viability of cells within simulated intestinal fluid, including strains of Bifidobacterium animalis subsp. lactis BB -12, Bifidobacterium breve DSM 20091, Bifidobacterium longum subsp. infantis DSM 20088, Lacticaseibacillus rhamnosus GG and Lacticaseibacillus rhamnosus C112, even after prolonged storage. Remarkably, the physicochemical parameters of the impregnated and dried apple slices remained nearly constant and akin to the control samples. Therefore, the combination of vacuum impregnation and air drying has the potential to be used to produce enriched prebiotic organic apple snacks, providing consumers with additional health benefits, including enhanced gut health, with its associated implications, and increased satiety. This innovation could contribute to the development of health-promoting food products with improved nutritional profiles.

7.
Foods ; 13(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338584

RESUMEN

The main objective of this work was to evaluate the combined effect of a biotechnology process, based on selected yeast strains, and a high-pressure homogenization (HPH) treatment on the microbiological quality, structural organization of proteins, chitin content, and antioxidant activity of a mixture of cricket powder (Acheta domesticus) and water. Compared to untreated samples, the cricket matrix treated with HPH four times at 180 MPa promoted the growth of the inoculated Yarrowia lipolytica and Debaryomyces hansenii strains. HPH did not affect the concentration of chitin; however, the combination with microorganisms tended to reduce the content. Although the antioxidant activity increased from 0.52 to 0.68 TAC mM/TE after a 48 h incubation in the control, it was further improved by the combination of HPH and D. hansenii metabolism, reaching a value of 0.77 TAC mM/TE. The combination of the two approaches also promoted a reduction in the intensity of bands with molecular weights between 31 and 21.5 kDa in favor of bands with a lower molecular weight. In addition, HPH treatment reduced the number of accessible thiols, suggesting protein structure changes that may further impact the technological properties of cricket powder.

8.
Foods ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928888

RESUMEN

Kombucha is a trending tea fermented via a complex microflora of yeasts and acetic acid bacteria. It can be a valid low-calorie substitute for soft drinks due to its sour, naturally carbonated, and sweet taste. Despite increased interest, the microflora and functional properties of kombucha have not yet been fully understood. The aim of this work was to characterize, from a microbiological, chemico-physical, and functional point of view, three types of artisanal kombucha obtained by fermenting green tea containing sugar by means of different starter cultures. Metagenomic analysis revealed a predominance of yeasts compared to bacteria, regardless of the sample. In particular, Brettanomyces spp. was found to be the dominant yeast. Moreover, the different types of kombucha had different microbial patterns in terms of acetic acid bacteria and yeasts. Ethanol and acetic acid were the dominant volatile molecules of the kombucha volatilome; the samples differed from each other in terms of their content of alcohols, esters, and acids. All the samples showed a high antioxidant potential linked to the high content of phenols. This study confirmed the positive chemico-physical and functional properties of kombucha and indicated that the microflora responsible for the fermentation process can significantly affect the characteristics of the final product.

9.
Foods ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38254609

RESUMEN

This study aimed to investigate consumer sensory profiles and liking of Parmigiano Reggiano PDO cheese produced with milk from cows reared indoors and fed with different forage sources, i.e., dry hay and fresh forage. Two cheese samples were tested by 119 Italian subjects, following a protocol that included a Check-All-That-Apply method to assess the sensory profile, a Just-About-Right scale to evaluate the adequacy of attributes, and questions on liking (9-point hedonic scale). A questionnaire related to personal information and consumption habits was also submitted. The color of the two samples, based on image analysis, was different: the sample produced with milk from the dairy cows fed fresh forage had a higher intensity of yellow than the other; they were also described differently (p ≤ 0.05) by participants in the consumer test. Indeed, Parmigiano Reggiano produced with milk from the cows that were fed dry hay was mainly characterized by a "fresh milk" and "solubility", while the sample produced with milk from cows fed fresh forage was described as "yellow", "seasoned", "pungent", and with a "cheese crust" flavor. Even if no significant differences were observed between the two samples in terms of liking (p ≤ 0.05), the attribute "graininess" showed a great impact on liking ratings together with "yellow" (p ≤ 0.05), apparently corresponding to a specific expectation regarding the intensity of these attributes. Data were also analyzed according to the gender of consumers, highlighting that for women, the adequacy of "fresh milk", "sweet", and "graininess" greatly impacted liking for the cheese from cows fed dry hay.

10.
Food Microbiol ; 36(1): 63-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23764221

RESUMEN

This research investigated the potential of multi-pass homogenization treatment for the inactivation of Salmonella enterica serovar Enteritidis inoculated at different levels in liquid whole egg (LWE) comparing the efficacy of this treatment with a traditional thermal one performed at 65 °C. Moreover, the effects of high pressure treatment (HPH) on structural and functional properties such as viscosity, microstructure and foaming abilities of LWE were investigated. The data obtained suggested that the multi-pass high pressure treatment at 100 MPa of S. enterica serovar Enteritidis inoculated in LWE at 7 and 4 log CFU/ml resulted in a first order inactivation kinetic, while the thermal inactivation curves of S. enterica serovar Enteritidis inoculated at 8 and 4 log CFU/ml presented a non-linear behaviour, with a marked tail after 3 min of treatment at 65 °C. Additionally, HPH treatment caused an increase in foaming capacity of LWE, with respect to the untreated samples, passing from values of 26% of the control to 50% of pressure treated samples.


Asunto(s)
Huevos/análisis , Huevos/microbiología , Manipulación de Alimentos/métodos , Salmonella enteritidis/crecimiento & desarrollo , Seguridad de Productos para el Consumidor , Inocuidad de los Alimentos , Calor , Presión , Viscosidad
11.
Foods ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37685221

RESUMEN

The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.

12.
Food Microbiol ; 32(2): 302-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22986193

RESUMEN

Low levels of High Pressure of Homogenization (HPH) can be applied directly to lactic acid bacteria cells in order to enhance some functional properties. In a previous work we observed that a 50 MPa HPH treatment increased Lactobacillus paracasei A13 hydrophobicity and resistance to simulated gastric digestion. The aim of this work was to assess the in vivo effects of HPH treatment applied to probiotic lactobacilli on their interaction capacity with the gut and on their ability to induce IgA cell proliferation in mice intestine. BALB/c mice received FITC-labelled cultures of strains, previously treated or not (control) at 50 MPa. Fluorescently labelled cells were studied in the intestine of animals sacrificed 10 and 30 min after intragastric intubation. HPH-treated and control cultures of each strain were orally administered to mice for 2, 5 or 7 consecutive days. The number of IgA-producing cells in the gut was studied by immunohistochemistry. HPH treated probiotic lactobacilli modified their interaction with the small intestine. HPH-treated cells induced a higher IgA response compared to untreated ones, in a strain- and feeding period-dependent way. HPH treatment could increase some in vivo functional characteristics of probiotic strains, highlighting the potential of this technique for the development of probiotic cultures.


Asunto(s)
Lactobacillus/química , Probióticos/química , Animales , Adhesión Bacteriana , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina A/inmunología , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Lactobacillus/citología , Lactobacillus/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana , Presión
13.
Foods ; 11(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35804735

RESUMEN

The aromatic complexity of a wine is mainly influenced by the interaction between grapes and fermentation agents. This interaction is very complex and affected by numerous factors, such as cultivars, degree of grape ripeness, climate, mashing techniques, must chemical−physical characteristics, yeasts used in the fermentation process and their interactions with the grape endogenous microbiota, process parameters (including new non-thermal technologies), malolactic fermentation (when desired), and phenomena occurring during aging. However, the role of yeasts in the formation of aroma compounds has been universally recognized. In fact, yeasts (as starters or naturally occurring microbiota) can contribute both with the formation of compounds deriving from the primary metabolism, with the synthesis of specific metabolites, and with the modification of molecules present in the must. Among secondary metabolites, key roles are recognized for esters, higher alcohols, volatile phenols, sulfur molecules, and carbonyl compounds. Moreover, some specific enzymatic activities of yeasts, linked above all to non-Saccharomyces species, can contribute to increasing the sensory profile of the wine thanks to the release of volatile terpenes or other molecules. Therefore, this review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.

14.
Food Res Int ; 159: 111589, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940789

RESUMEN

Sublethal HPH treatments have been demonstrated to impact the technological properties and functions of treated microorganisms by inducing specific enzymes/genes or modulating membrane structures and inducing autolysis. In this work, the early effects of a 100 MPa HPH treatment on the winery starter Saccharomyces cerevisiae ALEAFERM AROM grown in synthetic must were assessed. While there were no differences in cell cultivability during the first 48 h between treated and untreated cells, a reduction in volatile metabolites released by HPH-treated cells during the first 2 h was observed. This reduction was only temporary since after 48 h, volatile molecules reached similar or even higher concentrations compared with the control. Moreover, the gene expression response of HPH-treated cells was evaluated after 1 h of incubation and compared with that of untreated cells. A massive rearrangement of gene expression was observed with the identification of 1220 differentially expressed genes (DEGs). Most of the genes related to energetic metabolic pathways and ribosome structure were downregulated, while genes involved in ribosome maturation, transcription, DNA repair, response to stimuli and stress were upregulated. These findings suggest that HPH induces or promotes an autolytic-like behaviour that can be exploited in winemaking.


Asunto(s)
Saccharomyces cerevisiae , Autólisis , Expresión Génica , Humanos , Saccharomyces cerevisiae/genética
15.
Microorganisms ; 10(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35888998

RESUMEN

This study focuses on the isolation of lactobacilli/bifidobacteria from human breast milk and their first characterization, in the perspective to find new probiotic candidates to be included in food products. More specifically, breast-milk-isolated strains demonstrated a very good aptitude to adhere to intestinal cells, in comparison with L. rhamnosus GG strain, taken as reference. The same behavior has been found for hydrophobicity/auto-aggregation properties. A remarkable antagonistic activity was detected for these isolates not only against spoilage and pathogenic species of food interest, but also against the principal etiological agents of intestinal infections. Indeed, isolated strains impaired spoilage and pathogenic species growth, as well as biofilm formation by gut pathogens. In addition, breast milk strains were characterized for their antibiotic susceptibility, displaying species-specific and strain-specific susceptibility patterns. Finally, to assess their technological potential, the fermentation kinetics and viability of breast milk strains in pasteurized milk were investigated, also including the study of the volatile molecule profiles. In this regard, all the strains pointed out the release of aroma compounds frequently associated with the sensory quality of several dairy products such as acetic acid, diacetyl, acetoin, acetaldehyde. Data here reported point up the high potential of breast-milk-isolated strains as probiotics.

16.
Front Microbiol ; 13: 830277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359728

RESUMEN

This paper reports on a common experiment performed by 17 Research Units of the Italian Group of Microbiology of Vine and Wine (GMVV), which belongs to the Scientific Society SIMTREA, with the aim to validate a protocol for the characterization of wine strains of Saccharomyces cerevisiae. For this purpose, two commercial S. cerevisiae strains (EC 1118 and AWRI796) were used to carry out inter-laboratory-scale comparative fermentations using both synthetic medium and grape musts and applying the same protocol to obtain reproducible, replicable, and statistically valid results. Ethanol yield, production of acetic acid, glycerol, higher alcohols, and other volatile compounds were assessed. Moreover, the Fourier transform infrared spectroscopy was also applied to define the metabolomic fingerprint of yeast cells from each experimental trial. Data were standardized as unit of compounds or yield per gram of sugar (glucose and fructose) consumed throughout fermentation, and analyzed through parametric and non-parametric tests, and multivariate approaches (cluster analysis, two-way joining, and principal component analysis). The results of experiments carried out by using synthetic must showed that it was possible to gain comparable results from three different laboratories by using the same strains. Then, the use of the standardized protocol on different grape musts allowed pointing out the goodness and the reproducibility of the method; it showed the main traits of the two yeast strains and allowed reducing variability amongst independent batches (biological replicates) to acceptable levels. In conclusion, the findings of this collaborative study contributed to the validation of a protocol in a specific synthetic medium and in grape must and showed how data should be treated to gain reproducible and robust results, which could allow direct comparison of the experimental data obtained during the characterization of wine yeasts carried out by different research laboratories.

17.
Front Biosci (Landmark Ed) ; 26(4): 612-643, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049685

RESUMEN

Lamiaceae (Labiatae) are an important group of medicinal plants, which have been used for treating heart disease in traditional medicine for centuries. These mainly aromatic plants are used as essential oils, extracts or isolated components (polyphenols, phenolic compounds, terpenes, iridoids etc.). Some Labiatae species (more than 30, such as cornmint, lavender, patchouli, rosemary etc.) are famous for their use in essential oil production worldwide. In this review, cardioprotective effects of Lamiaceae and their active secondary metabolites, as well as mechanism of action against cardiovascular diseases (hypertension, angina pectoris, hyperlipidemia, thromboembolism, coronary heart disease, heart failure, venous insufficiency, arrhythmia) will be discussed. Use of Labiatae as food or food additives (such as spices) may prevent risk of cardiovascular diseases, diabetes and cancer. This approach is also described as a part of the article. Studies on developing new, effective and safe natural products from Lamiaceae (rich source of flavonoids and other active compounds) are promising and may offer prevention and treatment for patients with coronary disease and other related diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Lamiaceae/química , Extractos Vegetales/farmacología , Humanos
18.
Front Microbiol ; 12: 651711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122365

RESUMEN

Cell surface hydrophobicity (CSH) and adhesion are very important phenotypical traits for probiotics that confer them a competitive advantage for the resilience in the human gastrointestinal tract. This study was aimed to understand the effects over time of a 50 MPa hyperbaric treatment on the surface properties of Lactobacillus acidophilus 08 including CSH, autoaggregation, and in vitro adhesion (mucin layer and Caco-2 cells). Moreover, a link between the hurdle applied and the expression of genes involved in the general stress response (groEL and clpP) and adhesion processes (efTu and slpA) was evaluated. High pressure homogenization (HPH) at 50 MPa significantly increased the CSH percentage (H%), autoaggregation and in vitro adhesion on mucin of L. acidophilus 08 cells compared with the untreated cells. Moreover, the hyperbaric hurdle induced an upregulation of the stress response genes groEL and ef-TU together with a down regulation of the clpP and S-layer slpA genes. Looking at the protein profile, HPH-treatment showed an increase in the number or intensity of protein bands at high and low molecular weights.

19.
Microorganisms ; 9(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946182

RESUMEN

Pathogenic fungi belonging to the genera Botrytis, Phaeomoniella, Fusarium, Alternaria and Aspergillus are responsible for vines diseases that affect the growth, grapevine yield and organoleptic quality. Among innovative strategies for in-field plant disease control, one of the most promising is represented by biocontrol agents, including wild epiphytic yeast strains of grapevine berries. Twenty wild yeast, isolated and molecularly identified from three different Malaysian regions (Perlis, Perak and Pahang), were evaluated in a preliminary screening test on agar to select isolates with inhibition against Botrytis cinerea. On the basis of the results, nine yeasts belonging to genera Hanseniaspora, Starmerella, Metschnikowia, Candida were selected and then tested against five grape berry pathogens: Aspergillus carbonarius, Aspergillus ochraceus, Fusarium oxysporum, Alternaria alternata and Phaeomoniella chlamydospora.Starmerella bacillaris FE08.05 and Metschnikowia pulcherrima GP8 and Hanseniaspora uvarum GM19 showed the highest effect on inhibiting mycelial growth, which ranged between 15.1 and 4.3 mm for the inhibition ring. The quantitative analysis of the volatile organic compound profiles highlighted the presence of isoamyl and phenylethyl alcohols and an overall higher presence of low-chain fatty acids and volatile ethyl esters. The results of this study suggest that antagonist yeasts, potentially effective for the biological control of pathogenic moulds, can be found among the epiphytic microbiota associated with grape berries.

20.
Food Chem ; 343: 128528, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189477

RESUMEN

Ethyl carbamate (EC), a genotoxic and carcinogenic compound in soy sauce accumulated during thermal processes, has raised public health concern for its multipoint potential carcinogenic risk to human. In this work, based on the analysis of EC accumulation during thermal processes of soy sauce, ornithine and quercetin were added before thermal processes to reduce EC accumulation. A reduction rate of 23.7-63.8% in simulated solution was founded. Kinetic studies indicated that ornithine was a byproduct of alcoholysis reaction when EC formed, while quercetin could compete with the precursor ethanol and react with carbamyl compounds, which therefore preventedEC accumulation. A maximum of 47.2% decrease of EC in soy sauce was achieved, and no remarkable changes in volatile compounds profile and color of soy sauce were found. In conclusion, the addition of quercetin and ornithine before thermal processes may be preferable for the controlling of EC content in soy sauce.


Asunto(s)
Ornitina/química , Quercetina/química , Alimentos de Soja , Uretano/química , Carcinógenos/química , Etanol/química , Fermentación , Calidad de los Alimentos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Alimentos de Soja/análisis , Uretano/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA