Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Neurosci ; 34(34): 11405-15, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143620

RESUMEN

The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRb(Nts)) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRb(Nts) neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (K(ATP)) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRb(Nts) neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1-12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRb(Nts) neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of K(ATP) channels.


Asunto(s)
Área Hipotalámica Lateral/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leptina/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/metabolismo , Neurotensina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Antagonistas del GABA/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuropéptidos/genética , Neurotensina/genética , Orexinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leptina/deficiencia
2.
Chem Senses ; 40(4): 223-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740302

RESUMEN

There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions.


Asunto(s)
Leptina/sangre , Edulcorantes/farmacología , Gusto/efectos de los fármacos , Gusto/fisiología , Lengua/metabolismo , Animales , Inyecciones Intraperitoneales , Leptina/administración & dosificación , Leptina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Leptina/metabolismo , Lengua/citología , Lengua/efectos de los fármacos
3.
Cell Metab ; 7(2): 179-85, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18249177

RESUMEN

The arcuate nucleus of the hypothalamus (ARH) is a key component of hypothalamic pathways regulating energy balance, and leptin is required for normal development of ARH projections. Diet-induced obesity (DIO) has a polygenic mode of inheritance, and DIO individuals develop the metabolic syndrome when a moderate amount of fat is added to the diet. Here we demonstrate that rats selectively bred to develop DIO, which are known to be leptin resistant before they become obese, have defective ARH projections that persist into adulthood. Furthermore, the ability of leptin to activate intracellular signaling in ARH neurons in vivo and to promote ARH neurite outgrowth in vitro is significantly reduced in DIO neonates. Thus, animals that are genetically predisposed toward obesity display an abnormal organization of hypothalamic pathways involved in energy homeostasis that may be the result of diminished responsiveness of ARH neurons to the trophic actions of leptin during postnatal development.


Asunto(s)
Hipotálamo/patología , Neuritas , Neuronas/ultraestructura , Obesidad/etiología , Animales , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/patología , Dieta , Metabolismo Energético , Predisposición Genética a la Enfermedad , Leptina/fisiología , Ratas , Ratas Endogámicas , Transducción de Señal
4.
J Neurosci ; 30(16): 5713-23, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20410123

RESUMEN

Leptin acts via its receptor (LepRb) to regulate neural circuits in concert with body energy stores. In addition to acting on a number of hypothalamic structures, leptin modulates the mesolimbic dopamine (DA) system. To determine the sites at which LepRb neurons might directly influence the mesolimbic DA system, we examined the distribution of LepRb neurons and their projections within mesolimbic brain regions. Although the ventral tegmental area (VTA) contains DA LepRb neurons, LepRb neurons are absent from the amygdala and striatum. Also, LepRb-EGFPf mice (which label projections from LepRb neurons throughout the brain) reveal that few LepRb neurons project to the nucleus accumbens (NAc). In contrast, the central amygdala (CeA) and its rostral extension receive copious projections from LepRb neurons. Indeed, LepRb-specific anterograde tracing demonstrates (and retrograde tracing confirms) that VTA LepRb neurons project to the extended CeA (extCeA) but not the NAc. Consistently, leptin promotes cAMP response element-binding protein phosphorylation in the extCeA, but not NAc, of leptin-deficient animals. Furthermore, transgenic mice expressing the trans-synaptic tracer wheat germ agglutinin in LepRb neurons reveal the innervation of CeA cocaine- and amphetamine-regulated transcript (CART) neurons by LepRb neurons, and leptin suppresses the increased CeA CART expression of leptin-deficient animals. Thus, LepRb VTA neurons represent a subclass of VTA DA neurons that specifically innervates and controls the extCeA; we hypothesize that these neurons primarily modulate CeA-directed behaviors.


Asunto(s)
Anfetamina , Amígdala del Cerebelo/fisiología , Cocaína , Neuronas/fisiología , Receptores de Leptina/fisiología , Área Tegmental Ventral/fisiología , Anfetamina/análisis , Amígdala del Cerebelo/química , Animales , Cocaína/análisis , Ratones , Ratones Obesos , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/fisiología , Neuronas/química , Neuronas/clasificación , Receptores de Leptina/análisis , Transcripción Genética/fisiología , Área Tegmental Ventral/química
5.
Endocrinology ; 160(2): 343-358, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541071

RESUMEN

The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.


Asunto(s)
Metabolismo Energético , Área Hipotalámica Lateral/fisiología , Receptor de Melanocortina Tipo 3/metabolismo , Adiposidad , Animales , Conducta Alimentaria , Área Hipotalámica Lateral/citología , Locomoción , Ratones , Ratones Transgénicos
6.
Neuroendocrinology ; 87(2): 65-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17374946

RESUMEN

Many of the small percentage of previously obese humans who successfully maintain weight loss report high levels of physical activity, suggesting a role for exercise in the maintenance of their lower body weights. The rat model of diet-induced obesity (DIO) has been particularly useful, since it shares several common characteristics with human obesity and, unlike the human condition, allows a thorough investigation of the effects of exercise on the central pathways which regulate energy homeostasis. In rats with DIO, voluntary wheel running selectively reduces adiposity without causing a compensatory increase in energy intake. These effects are likely mediated by signals generated by the exercising body such as interleukin-6, fatty acids, and heat which feed back on the brain to regulate central neuropeptide systems involved in the regulation of energy homeostasis. While exercise provides temporary reductions in obesity in adult rats, early postweaning exercise reduces adiposity in high-fat-fed DIO rats long after exercise is terminated. This suggests that early-onset exercise may permanently alter the development of the central pathways which regulate energy homeostasis. Therefore, identification of exercise-induced central and peripheral factors and elucidation of their interactions with central modulatory pathways may aid in the identification of new targets for the pharmacological treatment of human obesity.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Obesidad/prevención & control , Adiposidad/fisiología , Animales , Modelos Animales de Enfermedad , Homeostasis/fisiología , Humanos , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Ratas
7.
Mol Metab ; 14: 130-138, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29914853

RESUMEN

OBJECTIVE: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.


Asunto(s)
Metabolismo Energético , Hipotálamo/citología , Neuronas/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Animales , Femenino , Eliminación de Gen , Hipotálamo/embriología , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/clasificación , Neuronas/citología , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Receptores de Leptina/metabolismo
8.
Endocrinology ; 157(4): 1555-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26862996

RESUMEN

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Precursores de Proteínas/metabolismo , Maduración Sexual/fisiología , Taquicininas/metabolismo , Animales , Composición Corporal/genética , Composición Corporal/fisiología , Dinorfinas/genética , Dinorfinas/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Gonadotropinas/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Ovariectomía , Ovario/metabolismo , Precursores de Proteínas/genética , Reproducción/genética , Reproducción/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Maduración Sexual/genética , Taquicininas/genética , Factores de Tiempo , Útero/metabolismo
9.
Mol Metab ; 4(4): 299-309, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25830093

RESUMEN

OBJECTIVE: Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular identity of many LepRb subpopulations remain undefined due to the difficulty of studying the small fraction of total cells represented by LepRb neurons in heterogeneous brain regions. Here we sought to examine the transcriptome of LepRb neurons directly and identify markers for functionally relevant LepRb subsets. METHODS: We isolated mRNA from mouse hypothalamic and brainstem LepRb cells by Translating Ribosome Affinity Purification (TRAP) and analyzed it by RNA-seq (TRAP-seq). RESULTS: TRAP mRNA from LepRb cells was enriched for markers of peptidergic neurons, while TRAP-depleted mRNA from non-LepRb cells was enriched for markers of glial and immune cells. Genes encoding secreted proteins that were enriched in hypothalamic and brainstem TRAP mRNA revealed subpopulations of LepRb neurons that contained neuropeptide-encoding genes (including prodynorphin, Pdyn) not previously used as functional markers for LepRb neurons. Furthermore, Pdyn (cre) -mediated ablation of Lepr (flox) in Pdyn-expressing neurons (LepRb (Pdyn) KO mice) blunted energy expenditure to promote obesity during high-fat feeding. CONCLUSIONS: TRAP-seq of CNS LepRb neurons defines the LepRb neuron transcriptome and reveals novel markers for previously unrecognized subpopulations of LepRb neurons.

10.
Neuropsychopharmacology ; 40(9): 2113-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25761571

RESUMEN

Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.


Asunto(s)
Señales (Psicología) , Individualidad , Motivación/fisiología , Obesidad/patología , Anfetamina/farmacología , Animales , Condicionamiento Clásico , Dieta/efectos adversos , Susceptibilidad a Enfermedades , Ayuno , Insulina/sangre , Leptina/sangre , Masculino , Obesidad/sangre , Obesidad/etiología , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Refuerzo en Psicología , Factores de Tiempo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
11.
Endocrinology ; 156(5): 1692-700, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25734363

RESUMEN

Projections from the lateral hypothalamic area (LHA) innervate components of the mesolimbic dopamine (MLDA) system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc), to modulate motivation appropriately for physiologic state. Neurotensin (NT)-containing LHA neurons respond to multiple homeostatic challenges and project to the VTA, suggesting that these neurons could link such signals to MLDA function. Indeed, we found that pharmacogenetic activation of LHA NT neurons promoted prolonged DA-dependent locomotor activity and NAc DA efflux, suggesting the importance of VTA neurotransmitter release by LHA NT neurons for the control of MLDA function. Using a microdialysis-mass spectrometry technique that we developed to detect endogenous NT in extracellular fluid in the mouse brain, we found that activation of LHA NT cells acutely increased the extracellular concentration of NT (a known activator of VTA DA cells) in the VTA. In contrast to the prolonged elevation of extracellular NAc DA, however, VTA NT concentrations rapidly returned to baseline. Intra-VTA infusion of NT receptor antagonist abrogated the ability of LHA NT cells to increase extracellular DA in the NAc, demonstrating that VTA NT promotes NAc DA release. Thus, transient LHA-derived NT release in the VTA couples LHA signaling to prolonged changes in DA efflux and MLDA function.


Asunto(s)
Dopamina/metabolismo , Área Hipotalámica Lateral/metabolismo , Actividad Motora , Neostriado/metabolismo , Neurotensina/metabolismo , Núcleo Accumbens/metabolismo , Transducción de Señal , Área Tegmental Ventral/metabolismo , Animales , Masculino , Espectrometría de Masas , Ratones , Microdiálisis , Neuronas/metabolismo , Área Tegmental Ventral/citología
12.
Endocrinology ; 155(3): 748-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24424041

RESUMEN

Shifts in the composition of gut bacterial populations can alter host metabolism and may contribute to the pathogenesis of metabolic disorders, including obesity. Mice deficient in leptin action are obese with altered microbiota and increased susceptibility to certain intestinal pathogens. Because antimicrobial peptides (AMPs) secreted by Paneth cells represent a major mechanism by which the host influences the gut microbiome, we examined the mRNA expression of gut AMPs, several of which were decreased in leptin receptor (LepR)-deficient db/db mice, suggesting a potential role for AMP modulation of microbiota composition. To address the extent to which the alterations in gut microbiota and AMP mRNA expression in db/db mice result from increased food intake vs other defects in leptin action, we examined the effects of pair feeding and gut epithelial LepRb ablation on AMP mRNA expression and microbiota composition. We found that the phylum-level changes in fecal microbial content and AMP gene expression persist in pair-fed db/db mice, suggesting that these differences do not stem from hyperphagia alone. In addition, despite recent evidence to support a role for intestinal epithelial LepRb signaling in pathogen susceptibility, ablation of LepRb from the intestinal epithelium fails to alter body weight, composition of the microbiota, or AMP expression, suggesting a role for LepRb elsewhere for this regulation. Indeed, gut LepRb cells are not epithelial but rather constitute a previously uncharacterized population of perivascular cells within the intestinal submucosa. Overall, our data reveal a role for LepRb signaling extrinsic to the intestinal epithelium and independent of food intake in the control of the gut microbiome.


Asunto(s)
Regulación de la Expresión Génica , Hiperfagia , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Leptina/metabolismo , Receptores de Leptina/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos , Ingestión de Alimentos , Entamoeba histolytica/metabolismo , Femenino , Perfilación de la Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microbiota , ARN Mensajero/metabolismo , Receptores de Leptina/genética , Transducción de Señal
13.
Cell Metab ; 20(6): 1030-7, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25470549

RESUMEN

Hypoglycemia engenders an autonomically mediated counterregulatory (CR)-response that stimulates endogenous glucose production to maintain concentrations within an appropriate physiological range. Although the involvement of the brain in preserving normoglycemia has been established, the neurocircuitry underlying centrally mediated CR-responses remains unclear. Here we demonstrate that lateral parabrachial nucleus cholecystokinin (CCK(LPBN)) neurons are a population of glucose-sensing cells (glucose inhibited) with counterregulatory capacity. Furthermore, we reveal that steroidogenic-factor 1 (SF1)-expressing neurons of the ventromedial nucleus of the hypothalamus (SF1(VMH)) are the specific target of CCK(LPBN) glucoregulatory neurons. This discrete CCK(LPBN)→SF1(VMH) neurocircuit is both necessary and sufficient for the induction of CR-responses. Together, these data identify CCK(LPBN) neurons, and specifically CCK neuropeptide, as glucoregulatory and provide significant insight into the homeostatic mechanisms controlling CR-responses to hypoglycemia.


Asunto(s)
Colecistoquinina/metabolismo , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Animales , Glucemia/metabolismo , Masculino , Ratones , Núcleos Parabraquiales/citología
14.
Nat Neurosci ; 17(12): 1744-1750, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25383904

RESUMEN

Hypoglycemia initiates the counter-regulatory response (CRR), in which the sympathetic nervous system, glucagon and glucocorticoids restore glucose to appropriate concentrations. During starvation, low leptin levels restrain energy utilization, enhancing long-term survival. To ensure short-term survival during hypoglycemia in fasted animals, the CRR must overcome this energy-sparing program and nutrient depletion. Here we identify in mice a previously unrecognized role for leptin and a population of leptin-regulated neurons that modulate the CRR to meet these challenges. Hypoglycemia activates neurons of the parabrachial nucleus (PBN) that coexpress leptin receptor (LepRb) and cholecystokinin (CCK) (PBN LepRb(CCK) neurons), which project to the ventromedial hypothalamic nucleus. Leptin inhibits these cells, and Cck(cre)-mediated ablation of LepRb enhances the CRR. Inhibition of PBN LepRb cells blunts the CRR, whereas their activation mimics the CRR in a CCK-dependent manner. PBN LepRb(CCK) neurons are a crucial component of the CRR system and may be a therapeutic target in hypoglycemia.


Asunto(s)
Glucemia/metabolismo , Metabolismo Energético/fisiología , Hipoglucemia/metabolismo , Leptina/farmacología , Neuronas/metabolismo , Núcleos Parabraquiales/metabolismo , Animales , Glucemia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Leptina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Núcleos Parabraquiales/efectos de los fármacos , Receptores de Leptina/metabolismo
15.
Mol Metab ; 1(1-2): 61-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24024119

RESUMEN

Leptin action in the brain signals the repletion of adipose energy stores, suppressing feeding and permitting energy expenditure on a variety of processes, including reproduction. Leptin binding to its receptor (LepR-b) promotes the tyrosine phosphorylation of three sites on LepR-b, each of which mediates distinct downstream signals. While the signals mediated by LepR-b Tyr1138 and Tyr985 control important aspects of energy homeostasis and LepR-b signal attenuation, respectively, the role of the remaining LepR-b phosphorylation site (Tyr1077) in leptin action has not been studied. To examine the function of Tyr1077, we generated a "knock-in" mouse model expressing LepR-b (F1077), which is mutant for LepR-b Tyr1077. Mice expressing LepR-b (F1077) demonstrate modestly increased body weight and adiposity. Furthermore, females display impairments in estrous cycling. Our results suggest that signaling by LepR-b Tyr1077 plays a modest role in the control of metabolism by leptin, and is an important link between body adiposity and the reproductive axis.

16.
Nat Med ; 18(5): 820-3, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22522563

RESUMEN

Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.


Asunto(s)
Metabolismo Energético , Hipotálamo/fisiología , Leptina/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Animales , Ratones , Receptores de Leptina/fisiología
17.
Brain Res ; 1378: 18-28, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21237139

RESUMEN

Leptin acts via the long form of the leptin receptor (LepRb) on specialized sets of neurons in the brain to modulate diverse functions in concert with energy stores. Previous studies have revealed the distribution of LepRb-expressing neurons in the brain but not the regions to which LepRb neurons project to mediate downstream leptin actions. We utilized LepRb-cre in combination with cre-inducible enhanced green fluorescent protein (EGFP) and farnesylated EGFP (EGFPf) mouse reporter strains to visualize LepRb neurons and their projections, respectively, throughout the brain. The areas containing LepRb soma and projections were relatively circumscribed, as many brain regions contained no detectable EGFP or EGFPf. The highest concentrations of LepRb neurons and LepRb projections were found in the hypothalamus, where the ventral premamillary (PMv), dorsomedial (DMH), and arcuate (ARC) nuclei contained the greatest number of cell bodies, in addition to substantial EGFPf-reactivity. Furthermore, both LepRb soma and projections were present in a few midbrain and brainstem nuclei. Several brain regions including the hypothalamic paraventricular nucleus (PVH), the anteroventral periventricular nucleus (AVPe), and the central nucleus of the amygdala (CeA) contained few LepRb neurons but substantial EGFPf, suggesting that these regions represent targets of LepRb neurons that lie elsewhere in the brain. In some nuclei that contained both soma and projections, the distribution of soma and projections differed, suggesting that these areas transmit leptin-encoded information in a neuroanatomically directional manner.


Asunto(s)
Mapeo Encefálico , Encéfalo/citología , Vías Nerviosas/citología , Receptores de Leptina/biosíntesis , Animales , Encéfalo/metabolismo , Femenino , Ratones , Vías Nerviosas/metabolismo
18.
Endocrinology ; 152(3): 979-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209012

RESUMEN

A recent study systematically characterized the distribution of the long form of the leptin receptor (LepRb) in the mouse brain and showed substantial LepRb mRNA expression in the nonpreganglionic Edinger-Westphal nucleus (npEW) in the rostroventral part of the midbrain. This nucleus hosts the majority of urocortin 1 (Ucn1) neurons in the rodent brain, and because Ucn1 is a potent satiety hormone and electrical lesioning of the npEW strongly decreases food intake, we have hypothesized a role of npEW-Ucn1 neurons in leptin-controlled food intake. Here, we show by immunohistochemistry that npEW-Ucn1 neurons in the mouse contain LepRb and respond to leptin administration with induction of the Janus kinase 2-signal transducer and activator of transcription 3 pathway, both in vivo and in vitro. Furthermore, systemic leptin administration increases the Ucn1 content of the npEW significantly, whereas in mice that lack LepRb (db/db mice), the npEW contains considerably reduced amount of Ucn1. Finally, we reveal by patch clamping of midbrain Ucn1 neurons that leptin administration reduces the electrical firing activity of the Ucn1 neurons. In conclusion, we provide ample evidence for leptin actions that go beyond leptin's well-known targets in the hypothalamus and propose that leptin can directly influence the activity of the midbrain Ucn1 neurons.


Asunto(s)
Leptina/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Urocortinas/metabolismo , Animales , Expresión Génica , Masculino , Mesencéfalo/citología , Ratones , Técnicas de Placa-Clamp , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Urocortinas/genética
20.
Endocrinology ; 151(9): 4270-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20668022

RESUMEN

Because rearing rats in large litters (LLs) protects them from becoming obese, we postulated that LL rearing would protect rats selectively bred to develop diet-induced obesity (DIO) from becoming obese by overcoming their inborn central leptin resistance. Male and female DIO rats were raised in normal litters (NLs; 10 pups/dam) or LLs (16 pups/dam) and assessed for anatomical, biochemical, and functional aspects of leptin sensitivity at various ages when fed low-fat chow or a 31% fat high-energy (HE) diet. LL rearing reduced plasma leptin levels by postnatal day 2 (P2) and body weight gain by P8. At P16, LL DIO neonates had increased arcuate nucleus (ARC) binding of leptin to its extracellular receptors and at P28 an associated increase of their agouti-related peptide and alpha-MSH axonal projections to the paraventricular nucleus. Reduced body weight persisted and was associated with increased ARC leptin receptor binding and sensitivity to the anorectic effects of leptin, reduced adiposity, and enhanced insulin sensitivity in LL DIO rats fed chow until 10 wk of age. The enhanced ARC leptin receptor binding and reduced adiposity of LL DIO rats persisted after an additional 5 wk on the HE diet. Female LL DIO rats had similar reductions in weight gain on both chow and HE diet vs. normal litter DIO rats. We postulate that LL rearing enhances DIO leptin sensitivity by lowering plasma leptin levels and thereby increasing leptin receptor availability and that this both enhances the ARC-paraventricular nucleus pathway development and protects them from becoming obese.


Asunto(s)
Dieta , Leptina/sangre , Tamaño de la Camada/fisiología , Obesidad/fisiopatología , Adiposidad/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal/fisiología , Cruzamiento , Ingestión de Alimentos/fisiología , Femenino , Edad Gestacional , Inmunohistoquímica , Lactancia/fisiología , Leptina/metabolismo , Masculino , Obesidad/sangre , Obesidad/etiología , Núcleo Hipotalámico Paraventricular/metabolismo , Unión Proteica , Ratas , Receptores de Leptina/metabolismo , Factores de Tiempo , Destete , Aumento de Peso/fisiología , alfa-MSH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA