Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(6): 517-520, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35397933

RESUMEN

Molecular animations can be beneficial as teaching tools for genomics education; however, barriers to their effective implementation remain. This article proposes informed design guidelines from the perspective of the animator that may assist others to effectively communicate scientific concepts to their respective audiences and communities.


Asunto(s)
Educación de Pregrado en Medicina , Genómica
2.
Genome Res ; 22(2): 307-21, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21788347

RESUMEN

Histone H2A.Z (H2A.Z) is an evolutionarily conserved H2A variant implicated in the regulation of gene expression; however, its role in transcriptional deregulation in cancer remains poorly understood. Using genome-wide studies, we investigated the role of promoter-associated H2A.Z and acetylated H2A.Z (acH2A.Z) in gene deregulation and its relationship with DNA methylation and H3K27me3 in prostate cancer. Our results reconcile the conflicting reports of positive and negative roles for histone H2A.Z and gene expression states. We find that H2A.Z is enriched in a bimodal distribution at nucleosomes, surrounding the transcription start sites (TSSs) of both active and poised gene promoters. In addition, H2A.Z spreads across the entire promoter of inactive genes in a deacetylated state. In contrast, acH2A.Z is only localized at the TSSs of active genes. Gene deregulation in cancer is also associated with a reorganization of acH2A.Z and H2A.Z nucleosome occupancy across the promoter region and TSS of genes. Notably, in cancer cells we find that a gain of acH2A.Z at the TSS occurs with an overall decrease of H2A.Z levels, in concert with oncogene activation. Furthermore, deacetylation of H2A.Z at TSSs is increased with silencing of tumor suppressor genes. We also demonstrate that acH2A.Z anti-correlates with promoter H3K27me3 and DNA methylation. We show for the first time, that acetylation of H2A.Z is a key modification associated with gene activity in normal cells and epigenetic gene deregulation in tumorigenesis.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Neoplasias/genética , Acetilación , Línea Celular Tumoral , Metilación de ADN , Genes Supresores de Tumor , Humanos , Masculino , Modelos Biológicos , Neoplasias/metabolismo , Nucleosomas/metabolismo , Oncogenes , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transporte de Proteínas , Sitio de Iniciación de la Transcripción , Activación Transcripcional
3.
Can J Occup Ther ; 81(2): 124-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25004588

RESUMEN

BACKGROUND: No previous qualitative exploration of urinary incontinence (UI) or post-stroke urinary incontinence (PSUI) has been undertaken in an Australian population. PURPOSE: The purpose of this study is to explore the experiences of community-dwelling stroke survivors who were living with UI/PSUI and understand how context shaped those experiences. METHODS: A pragmatic approach using thematic analysis was employed for this study. FINDINGS: Four themes emerged from the data: "I've got to go": onset and daily experience of UI; "No one ever mentioned it": lack of advice and information from the health system; "You can't enjoy something if you've got to go the toilet": experience of occupational restrictions; and "It's just a matter of planning": management strategies. IMPLICATIONS: UI continued well beyond discharge and was shaped by limited advice, distress, and role loss. Occupational therapists are encouraged to engage in assessment, management, and treatment of UI, including the provision of education that promotes continence, attenuates negative experiences, and enhances community participation.


Asunto(s)
Actividades Cotidianas/psicología , Accidente Cerebrovascular/complicaciones , Sobrevivientes/psicología , Incontinencia Urinaria/etiología , Incontinencia Urinaria/psicología , Adaptación Psicológica , Australia , Estudios de Seguimiento , Humanos , Masculino , Terapia Ocupacional
4.
Am J Physiol Gastrointest Liver Physiol ; 303(10): G1153-63, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22899825

RESUMEN

A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na(+) and Cl(-). In the second stage, the ducts exchange Na(+) and Cl(-) for K(+) and HCO(3)(-), producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and chemical alterations. In this study, we construct a radially symmetric mathematical model of the mouse salivary gland duct, representing the lumen, the cell, and the interstitium. For a given flow and primary saliva composition, we predict the potential differences and the luminal and cytosolic concentrations along a duct. Our model accounts well for experimental data obtained in wild-type animals as well as knockouts and chemical inhibitors. Additionally, the luminal membrane potential of the duct cells is predicted to be very depolarized compared with acinar cells. We investigate the effects of an electrogenic vs. electroneutral anion exchanger in the luminal membrane on concentration and the potential difference across the luminal membrane as well as how impairing the cystic fibrosis transmembrane conductance regulator channel affects other ion transporting mechanisms. Our model suggests the electrogenicity of the anion exchanger has little effect in the submandibular duct.


Asunto(s)
Electrólitos/metabolismo , Saliva/química , Conductos Salivales/metabolismo , Células Acinares/fisiología , Animales , Bicarbonatos/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Transporte Iónico , Potenciales de la Membrana/fisiología , Ratones , Modelos Biológicos , Potasio/metabolismo , Sodio/metabolismo , Canales de Sodio/efectos de los fármacos
5.
J Theor Biol ; 305: 45-53, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22521411

RESUMEN

An understanding of Ca(2+) signalling in saliva-secreting acinar cells is important, as Ca(2+) is the second messenger linking stimulation of cells to production of saliva. Ca(2+) signals affect secretion via the ion channels located both apically and basolaterally in the cell. By approximating Ca(2+) waves with periodic functions on the apical and basolateral membranes, we isolate individual wave properties and investigate them for their effect on fluid secretion in a mathematical model of the acinar cell. Mean Ca(2+) concentration is found to be the most significant property in signalling secretion. Wave speed was found to encode a range of secretion rates. Ca(2+) oscillation frequency and amplitude had little effect on fluid secretion.


Asunto(s)
Señalización del Calcio/fisiología , Modelos Biológicos , Salivación/fisiología , Células Acinares/metabolismo , Canales de Cloruro/fisiología , Humanos , Activación del Canal Iónico/fisiología , Saliva/metabolismo , Tasa de Secreción/fisiología
6.
Biochim Biophys Acta ; 1803(9): 1003-12, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20347885

RESUMEN

Dual specificity phosphatases are characterised by their ability to dephosphorylate both phosphotyrosine and phosphoserine/threonine residues within the one substrate. The aim of this study was to characterise the phosphatase activity of the atypical dual specificity phosphatase, DUSP26 on MAP kinases, and to determine its expression, regulation and function in cancer cells. Overexpression and knockdown of DUSP26 in epithelial cells and in vitro phosphatase assays were used to demonstrate that, contrary to several published reports, DUSP26 does not act as a dual specificity phosphatase on ERK, JNK or p38 MAPKs. However, overexpression of DUSP26 in MCF10A epithelial cells suppressed colony formation and acinar growth in 3D culture, effects dependent on its phosphatase activity, while knockdown of DUSP26 in HOSE17.1 cells enhanced colony formation and cellular proliferation. DUSP26 mRNA expression was reduced in neuroblastoma, brain and ovarian cancer cell lines. Consistent with epigenetic silencing of DUSP26, expression was enhanced by treatment of cells with 5-aza-2-deoxycitidine and trichostatin A, and a CpG island upstream of the DUSP26 transcriptional start site was variably methylated in cancer cell lines. Together, these results help to clarify confusion in the literature relating to DUSP26 substrate specificity and support recent reports that substrates other than MAPKs are the primary substrates of this phosphatase. In addition, they indicate that DUSP26 may function as a tumour suppressor in particular cancers.


Asunto(s)
Proliferación Celular , Fosfatasas de Especificidad Dual/fisiología , Células Epiteliales/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , Animales , Células CHO , Células COS , Células Cultivadas , Chlorocebus aethiops , Islas de CpG/genética , Cricetinae , Cricetulus , Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor/fisiología , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fosforilación/fisiología
7.
Biochem J ; 418(3): 475-89, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19228121

RESUMEN

DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.


Asunto(s)
Fosfatasas de Especificidad Dual/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 3 de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/clasificación , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
8.
Gynecol Oncol ; 114(2): 265-72, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19450871

RESUMEN

BACKGROUND: The urokinase plasminogen activator (uPA) system has been implicated in progression and poor prognosis in epithelial ovarian cancer (EOC) patients. The present study investigated the distribution of uPA and its receptor (uPAR) in EOC cell lines, primary and metastatic tumors, and the relationship between uPA/uPAR and matrix metalloproteinase (MMP) expression using immunohistochemistry. We also studied the association between uPA/uPAR expression and clinical and pathological parameters including disease progression free survival (PFS). METHODS: The expression of uPA/uPAR was examined on paraffin-embedded tissue sections from primary EOC (n=100), and matched metastatic lesions (n=30) of untreated patients, normal ovarian tissues (n=20) as well as 8 primary and metastatic EOC cell lines by immunohistochemistry. Co-immunolabeling of uPA and MMP-1, -2, -9 or MT1-MMP was examined using confocal microscopy. RESULTS: The expression of uPA/uPAR was found in most primary (92% and 88% positive, respectively), metastatic ovarian tumors (93% and 90% positive, respectively), and all of examined EOC cell lines. The majority of specimens showed moderate to strong immunostaining of tumor and stromal cells; for primary specimens, this was significantly associated with tumor stage, grade and time to relapse (P<0.01). Overexpression of uPA/uPAR was found to be associated with an unfavorable prognosis with significantly reduced median disease PFS of 16 vs. 33 months for uPA (P<0.001), and 15 vs. 28 months for uPAR (P<0.001). Co-localization of uPA with MMP-1, -2, -9 or MT1-MMP was also seen in primary tumors and metastatic lesions. CONCLUSIONS: The expression of uPA/uPAR was associated with EOC progression. uPA/uPAR are useful markers for EOC prognosis and could be promising therapeutic targets for treating incurable, recurrent EOC.


Asunto(s)
Neoplasias Ováricas/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/biosíntesis , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesis , Adulto , Anciano , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Isoenzimas , Metaloproteinasa 1 de la Matriz/biosíntesis , Metaloproteinasa 14 de la Matriz/biosíntesis , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Adhesión en Parafina
9.
Bull Math Biol ; 70(6): 1660-83, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18648889

RESUMEN

The concept of activation in transcriptional regulation is based on the assumption that product mRNA increases monotonically as a function of regulator concentration. We analyze the Shea-Ackers model of transcription and find this assumption to be correct only for the simplest of promoters. We define a new regulatory constant that is a nonlinear combination of association and transcription initiation constants characterizing activation and repression for more complicated promoters. Our results can guide the synthesis of new promoters and lead to a deeper understanding of the constraints guiding the natural promoters evolution.


Asunto(s)
Regulación de la Expresión Génica , Modelos Genéticos , Proteínas Represoras/fisiología , Transactivadores/fisiología , Transcripción Genética/genética , Algoritmos , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Modelos Biológicos , Regiones Promotoras Genéticas/genética
10.
Science ; 360(6385): 223-226, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650674

RESUMEN

Antibodies have the specificity to differentiate foreign antigens that mimic self antigens, but it remains unclear how such specificity is acquired. In a mouse model, we generated B cells displaying an antibody that cross-reacts with two related protein antigens expressed on self versus foreign cells. B cell anergy was imposed by self antigen but reversed upon challenge with high-density foreign antigen, leading to germinal center recruitment and antibody gene hypermutation. Single-cell analysis detected rapid selection for mutations that decrease self affinity and slower selection for epistatic mutations that specifically increase foreign affinity. Crystal structures revealed that these mutations exploited subtle topological differences to achieve 5000-fold preferential binding to foreign over self epitopes. Resolution of antigenic mimicry drove the optimal affinity maturation trajectory, highlighting the value of retaining self-reactive clones as substrates for protective antibody responses.


Asunto(s)
Anticuerpos/genética , Formación de Anticuerpos/genética , Autoantígenos/inmunología , Centro Germinal/inmunología , Imitación Molecular/genética , Autotolerancia , Animales , Anticuerpos/química , Anticuerpos/inmunología , Afinidad de Anticuerpos/genética , Linfocitos B/inmunología , Anergia Clonal , Reacciones Cruzadas , Cristalografía por Rayos X , Ratones , Ratones Mutantes , Mutación , Nucleoproteínas/genética , Nucleoproteínas/inmunología , Selección Genética , Análisis de la Célula Individual
12.
Cancer Lett ; 318(1): 76-85, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22155104

RESUMEN

To identify epigenetic-based biomarkers for diagnosis of ovarian cancer we performed MeDIP-Chip in A2780 and CaOV3 ovarian cancer cell lines. Validation by Sequenom massARRAY methylation analysis confirmed a panel of six gene promoters (ARMCX1, ICAM4, LOC134466, PEG3, PYCARD & SGNE1) where hypermethylation discriminated 27 serous ovarian cancer clinical samples versus 12 normal ovarian surface epithelial cells (OSE) (ROC of 0.98). Notably, CpG sites across the transcription start site of a potential long-intergenic non-coding RNA (lincRNA) gene (LOC134466), was shown to be hypermethylated in 81% of serous EOC and could differentiate tumours from OSE (p<0.05). We propose that this potential biomarker panel holds great promise as a diagnostic test for high-grade (Type II) serous ovarian cancer.


Asunto(s)
Biomarcadores/análisis , Metilación de ADN , Epigenómica , Perfilación de la Expresión Génica , Genoma Humano , Neoplasias Ováricas/genética , Regiones Promotoras Genéticas/genética , Islas de CpG/genética , Cistadenocarcinoma Seroso/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/metabolismo , Ovario/patología , Células Tumorales Cultivadas
13.
J Vis Exp ; (56)2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22042230

RESUMEN

Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5'-CpG-3' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs. This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing. DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al. and Clark et al., methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.


Asunto(s)
Metilación de ADN , ADN/química , Sulfitos/química , Secuencia de Bases , ADN/genética , ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos
14.
Cancer Lett ; 300(2): 122-33, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21075513

RESUMEN

The purpose of this study was to investigate the in vitro effect of anti-MUC1 monoclonal antibody (MAb) C595 alone and in combination with docetaxel, on the growth and survival of different epithelial ovarian cancer (EOC) cell lines. MUC1 expression was assessed on EOC cell lines (OVCAR-3, IGROV-1, A2780, CAOV-3, TOV-21G, TOV-112D, SKOV-3 and OV-90) using immunofluorescence labeling and flow cytometry. The effect of MAb C595 alone or in combination with docetaxel on the cell lines was studied by proliferation, colony and TUNEL assays. Our results indicate that all primary and metastatic EOC cell lines tested were positive to MAb C595 (MUC1); MAb C595 inhibited EOC cell proliferation in a MUC1- and dose-dependent manner; low-dose MAb C595 (1/2 of IC50) combined with docetaxel greatly improved efficiency of cell killing in EOC cells and induced apoptosis; the additive effect of MAb C595 was further confirmed in colony forming assays; and cell death following single or combined treatments was associated with the release of cytochrome c and increased caspase-3 activity. These results suggest that MAb C595 used either alone, or combined with docetaxel, is an attractive strategy for targeting human EOC.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Mucina-1/metabolismo , Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Taxoides/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Separación Celular , Docetaxel , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Etiquetado Corte-Fin in Situ , Microscopía Confocal , Mucina-1/efectos de los fármacos , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo
15.
Cancer Epidemiol Biomarkers Prev ; 20(1): 148-59, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21098650

RESUMEN

BACKGROUND: Previously, we showed that gene suppression commonly occurs across chromosome 2q14.2 in colorectal cancer, through a process of long-range epigenetic silencing (LRES), involving a combination of DNA methylation and repressive histone modifications. We now investigate whether LRES also occurs in prostate cancer across this 4-Mb region and whether differential DNA methylation of 2q14.2 genes could provide a regional panel of prostate cancer biomarkers. METHODS: We used highly sensitive DNA methylation headloop PCR assays that can detect 10 to 25 pg of methylated DNA with a specificity of at least 1:1,000, and chromatin immunoprecipitation assays to investigate regional epigenetic remodeling across 2q14.2 in prostate cancer, in a cohort of 195 primary prostate tumors and 90 matched normal controls. RESULTS: Prostate cancer cells exhibit concordant deacetylation and methylation of histone H3 Lysine 9 (H3K9Ac and H3K9me2, respectively), and localized DNA hypermethylation of EN1, SCTR, and INHBB and corresponding loss of H3K27me3. EN1 and SCTR were frequently methylated (65% and 53%, respectively), whereas INHBB was less frequently methylated. CONCLUSIONS: Consistent with LRES in colorectal cancer, we found regional epigenetic remodeling across 2q14.2 in prostate cancer. Concordant methylation of EN1 and SCTR was able to differentiate cancer from normal (P < 0.0001) and improved the diagnostic specificity of GSTP1 methylation for prostate cancer detection by 26%. IMPACT: For the first time we show that DNA methylation of EN1 and SCTR promoters provide potential novel biomarkers for prostate cancer detection and in combination with GSTP1 methylation can add increased specificity and sensitivity to improve diagnostic potential.


Asunto(s)
Biomarcadores de Tumor/genética , Cromosomas Humanos Par 2 , Metilación de ADN , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Gutatión-S-Transferasa pi/genética , Proteínas de Homeodominio/genética , Humanos , Subunidades beta de Inhibinas/genética , Masculino , Reacción en Cadena de la Polimerasa/métodos , Pronóstico , Neoplasias de la Próstata/diagnóstico , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA