Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 156(20): 204112, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35649866

RESUMEN

It has been established that Newton's law of viscosity fails for fluids under strong confinement as the strain-rate varies significantly over molecular length-scales. We thereby investigate if a nonlocal shear stress accounting for the strain-rate of an adjoining region by a convolution relation with a nonlocal viscosity kernel can be employed to predict the gravity-driven isothermal flow of a Weeks-Chandler-Andersen fluid in a nanochannel. We estimate, using the local average density model, the fluid's viscosity kernel from isotropic bulk systems of corresponding state points by the sinusoidal transverse force method. A continuum model is proposed to solve the nonlocal hydrodynamics whose solutions capture the key features and agree qualitatively with the results of non-equilibrium molecular dynamics simulations, with deviations observed mostly near the fluid-channel interface.

2.
Electrophoresis ; 41(7-8): 607-614, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31855289

RESUMEN

Screened repulsion between uniformly charged plates with an intervening electrolyte is analyzed for strongly overlapped electrical double layers (EDL), accounting for the steric effect of ions and their expulsion from EDL edges into the surrounding solution. As a generalization of a study by Philipse et al. which does not account for these effects, an analytical expression is derived for the repulsion pressure in the limit of infinitely long plates with a zero-field assumption, which agrees closely with the corresponding numerical solution at low inter-plate separations. Our results show an augmented repulsive pressure for finite-sized ions at strong EDL overlaps. For plates with a finite lateral size, we demonstrate a further extended domain of low inter-plate gaps where the repulsion pressure increases with ion size due to a strong interplay between the steric interaction of ions and the EDL overspill phenomenon, considered earlier in a study by Ghosal & Sherwood limited to the linear Debye-Hückel regime (which cannot account for the steric effect of ions). This investigation on a simple model should enhance our understanding of the interaction between charged particles in electrophoresis, nanoscale self-assembly, active particles, and various other electrokinetic systems.


Asunto(s)
Iones/química , Modelos Químicos , Electricidad Estática , Electrólitos/química , Electroforesis
3.
Phys Rev E ; 109(2-2): 025105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491612

RESUMEN

Electrohydrodynamic ion transport has been studied in nanotubes, nanoslits, and nanopores to mimic the advanced functionalities of biological ion channels. However, probing how the intricate interplay between the electrical and mechanical interactions affects ion conduction in asymmetric nanoconduits presents further obstacles. Here, ion transport across a conical nanopore embedded in a polarizable membrane under an electric field and pressure is analyzed by numerically solving a continuum model based on the Poisson, Nernst-Planck, and Navier-Stokes equations. We report an anomalous ionic current depletion, of up to 75%, and an unexpected rise in current rectification when pressure is exerted along the external electric field. Membrane polarization is revealed as the prerequisite to obtain this previously undetected electrohydrodynamic coupling. The electric field induces large surface charges at the pore tip due to its conical shape, creating nonuniform electrical double layers (EDL) with a massive accumulation of electrolyte ions near the orifice. Once applied, the pressure distorts the quasiequilibrium distribution of the EDL ions to influence the nanopore conductivity. Our fundamental approach to inspect the effect of pressure on the channel EDL (and thus ionic conductance) in contrast to its effect on the current arising from the hydrodynamic streaming of ions further explains the pressure-sensitive ion transport in different nanochannels and physical regimes manifested in past experiments, including the hitherto inexplicit mechanism behind the mechanically activated ion transport in carbon nanotubes. This enhances our broad understanding of nanoscale electrohydrodynamic ion transport, yielding a platform to build nanofluidic devices and ionic circuits with more robust and tunable responses to electrical and mechanical stimuli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA