Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 56(6): 777-85, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25435140

RESUMEN

R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Genoma Humano , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Mol Cell ; 51(4): 423-39, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973373

RESUMEN

Renal ciliopathies are a leading cause of kidney failure, but their exact etiology is poorly understood. NEK8/NPHP9 is a ciliary kinase associated with two renal ciliopathies in humans and mice, nephronophthisis (NPHP) and polycystic kidney disease. Here, we identify NEK8 as a key effector of the ATR-mediated replication stress response. Cells lacking NEK8 form spontaneous DNA double-strand breaks (DSBs) that further accumulate when replication forks stall, and they exhibit reduced fork rates, unscheduled origin firing, and increased replication fork collapse. NEK8 suppresses DSB formation by limiting cyclin A-associated CDK activity. Strikingly, a mutation in NEK8 that is associated with renal ciliopathies affects its genome maintenance functions. Moreover, kidneys of NEK8 mutant mice accumulate DNA damage, and loss of NEK8 or replication stress similarly disrupts renal cell architecture in a 3D-culture system. Thus, NEK8 is a critical component of the DNA damage response that links replication stress with cystic kidney disorders.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/patología , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Cilios/metabolismo , Quinasas Ciclina-Dependientes/genética , Daño del ADN/genética , Inestabilidad Genómica , Humanos , Ratones , Mutación/genética , Quinasas Relacionadas con NIMA , Fosforilación , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico
3.
Mol Cell ; 35(2): 228-39, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647519

RESUMEN

Signaling pathways that respond to DNA damage are essential for the maintenance of genome stability and are linked to many diseases, including cancer. Here, a genome-wide siRNA screen was employed to identify additional genes involved in genome stabilization by monitoring phosphorylation of the histone variant H2AX, an early mark of DNA damage. We identified hundreds of genes whose downregulation led to elevated levels of H2AX phosphorylation (gammaH2AX) and revealed links to cellular complexes and to genes with unclassified functions. We demonstrate a widespread role for mRNA-processing factors in preventing DNA damage, which in some cases is caused by aberrant RNA-DNA structures. Furthermore, we connect increased gammaH2AX levels to the neurological disorder Charcot-Marie-Tooth (CMT) syndrome, and we find a role for several CMT proteins in the DNA-damage response. These data indicate that preservation of genome stability is mediated by a larger network of biological processes than previously appreciated.


Asunto(s)
Inestabilidad Genómica , ARN Interferente Pequeño/fisiología , Transducción de Señal , Enfermedad de Charcot-Marie-Tooth/genética , Biología Computacional , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Regulación hacia Abajo , Genes cdc , Biblioteca Genómica , Genómica , Células HeLa , Histonas/metabolismo , Humanos , Fosforilación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
4.
DNA Repair (Amst) ; 6(7): 953-66, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17531546

RESUMEN

The proper detection and repair of DNA damage is essential to the maintenance of genomic stability. The genome is particularly vulnerable during DNA replication, when endogenous and exogenous events can hinder replication fork progression. Stalled replication forks can fold into deleterious conformations and are also unstable structures that are prone to collapse or break. These events can lead to inappropriate processing of the DNA, ultimately resulting in genomic instability, chromosomal alterations and cancer. To cope with stalled replication forks, the cell relies on the replication checkpoint to block cell cycle progression, downregulate origin firing, stabilize the fork itself, and restart replication. The ATR (ATM and Rad3-related) kinase and its downstream effector kinase, Chk1, are central regulators of the replication checkpoint. Loss of these checkpoint proteins causes replication fork collapse and chromosomal rearrangements which may ultimately predispose affected individuals to cancer. This review summarizes our current understanding of how the ATR pathway recognizes and stabilizes stalled replication forks.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Reparación del ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA