Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34472587

RESUMEN

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

2.
J Am Chem Soc ; 144(42): 19437-19446, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36245092

RESUMEN

A new approach for synthesizing polycyclic heterofused 7-deazapurine heterocycles and the corresponding nucleosides was developed based on C-H functionalization of diverse (hetero)aromatics with dibenzothiophene-S-oxide followed by the Negishi cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling afforded a series of (het)aryl-pyrimidines that were converted to fused deazapurine heterocycles through azidation and thermal cyclization. The fused heterocycles were glycosylated to the corresponding 2'-deoxy- and ribonucleosides, and a series of derivatives were prepared by nucleophilic substitutions at position 4. Four series of new polycyclic thieno-fused 7-deazapurine nucleosides were synthesized using this strategy. Most of the deoxyribonucleosides showed good cytotoxic activity, especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted thieno-fused 7-deazapurine nucleosides were fluorescent, and the former one was converted to 2'-deoxyribonucleoside triphosphate for enzymatic synthesis of labeled oligonucleotides.


Asunto(s)
Nucleósidos , Ribonucleósidos , Línea Celular Tumoral , Pirimidinas , Óxidos , Zinc , Oligonucleótidos , Desoxirribonucleósidos , Nucleósidos de Purina
3.
J Org Chem ; 85(12): 8085-8101, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32432875

RESUMEN

Two isomeric series of benzothieno-fused 7-deazapurine (benzo[4',5']thieno[3',2':4,5]- and benzo[4',5']thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidine) ribonucleosides were designed and synthesized. Key steps of the synthesis included the Negishi coupling of zincated dichloropyrimidine with 2- or 3-iodobenzothiophene followed by azidation, thermal or photochemical cyclization, glycosylation, and final functionalization at position 6 through cross-couplings or nucleophilic substitutions. Deprotection gave the final nucleosides, some of which showed moderate cytotoxic and antiviral activity. Most of the free nucleosides showed moderate to strong fluorescence with emission maxima of 362-554 nm. 2'-Deoxyribonucleoside and its 5'-O-triphosphate were also prepared from benzothieno-fused 7-deazaadenine derivative, and the triphosphate was a good substrate for KOD XL DNA polymerase in primer extension synthesis of modified DNA which exerted a weak fluorescence which was slightly enhanced in double-stranded DNA as compared to single-stranded oligonucleotides.


Asunto(s)
Ribonucleósidos , Antivirales , Nucleósidos , Purinas
4.
J Org Chem ; 85(16): 10539-10551, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32692916

RESUMEN

A series of 8-substituted 1-methyl-1,4-dihydropyrazolo[3',4':4,5]pyrrolo[2,3-d]pyrimidine (methylpyrazolo-fused 7-deazapurine) ribonucleosides have been designed and synthesized. Two synthetic approaches to the key heterocyclic aglycon 7, (i) a six-step classical heterocyclization starting from 5-chloro-1-methyl-4-nitropyrazole and (ii) a three-step cross-coupling and cyclization approach starting from the zincated 4,6-dichloropyrimidine, gave comparable total yields of 18% vs 13%. The glycosylation of 7 was attempted by three different methods but only the Vorbrüggen silyl-base protocol was efficient and stereoselective to give desired ß-anomeric nucleoside intermediate 17A. Its nucleophilic substitutions or cross-coupling reactions at position 8 and deprotection of the sugar moiety gave eight derivatives of pyrazolo-fused deazapurine ribonucleosides, some of which were weakly fluorescent. Methyl, amino, and methylsulfanyl derivatives exerted submicromolar cytotoxic effects in vitro against a panel of cancer and leukemia cell lines as well as antiviral effects against hepatitis C virus in the replicon assay.


Asunto(s)
Nucleósidos , Ribonucleósidos , Antivirales/farmacología , Purinas/farmacología , Ribonucleósidos/farmacología
5.
Eur J Med Chem ; 244: 114850, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283179

RESUMEN

In this work, a large set of betulinic acid derivatives modified with various aromatic substituents at the position C-3 were prepared via Suzuki-Myiaura cross-coupling. All compounds were tested for their in vitro cytotoxic activity in 8 cancer and 2 healthy cell lines. Derivatives 6h, 6i, and 6o had the lowest IC50 in the CCRF-CEM cell line (0.69-4.0 µM) and had high selectivity. In addition, 6h and 6i also showed significant activity in daunorubicin-resistant CEM and taxol-resistant K562 cell lines; therefore, they were selected for the evaluation of the mechanism of action. First, the effect of 6h, 6i, and 6o on cell death induction was studied. To our surprise, we have not detected almost any apoptotic cells, even following a long-time exposure of CCRF-CEM cells to the compounds. On the other hand, a dramatic cell number decrease was observed, proportional to the time of the compound's exposure. Based on this data it was concluded that the effect of compounds is cytostatic rather than cytotoxic, which was further confirmed by subsequent studies of the impact of 6h, 6i, and 6o on the cell cycle. Detailed cell cycle analysis revealed a block in the G1 phase accompanied by reduced expression of phosphorylated forms of the RB protein as well as cyclin A protein. Evaluation of the pharmacological properties of the most promising compounds revealed their high stability in the presence of phosphate buffer, human plasma, and microsomes and limited permeability determined using permeability through artificial membrane (PAMPA) and cell permeability assay: Caco-2 and MDCK-MDR1 cell lines. Compounds 6h, 6i, and 6o were selected for further drug development; their cytostatic effect may be advantageous in this process since we expect fewer non-specific interactions and toxicity than in highly cytotoxic compounds. In addition, the activity of 6h and 6i against resistant CEM-DNR and K562-TAX leukemic cell lines makes them promising as a possible future alternative to currently used therapies.


Asunto(s)
Antineoplásicos , Citostáticos , Neoplasias , Humanos , Ensayos de Selección de Medicamentos Antitumorales , Citostáticos/farmacología , Células CACO-2 , Triterpenos Pentacíclicos/farmacología , Antineoplásicos/farmacología , Fenotipo , Línea Celular Tumoral , Apoptosis
6.
Viruses ; 14(12)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36560833

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable disruption worldwide. For efficient SARS-CoV-2 detection, new methods of rapid, non-invasive sampling are needed. This study aimed to investigate the stability of SARS-CoV-2 in a novel medium for gargle-lavage (GL) self-sampling and to compare the performance of SARS-CoV-2 detection in paired self-collected GL and clinician-obtained nasopharyngeal swab (NPS) samples. The stability study for SARS-CoV-2 preservation in a novel medium was performed over 14 days (4 °C, 24-27 °C, and 37 °C). In total, 494 paired GL and NPS samples were obtained at the University Hospital in Olomouc in April 2021. SARS-CoV-2 detection in paired samples was performed with a SARS-CoV-2 Nucleic Acid Detection Kit (Zybio, Chongqing Municipality, Chongqing, China), an Elecsys® SARS-CoV-2 Antigen assay (Roche Diagnostics, Mannheim, Germany), and a SARS-CoV-2 Antigen ELISA (EUROIMMUN, Lübeck, Germany). The stability study demonstrated excellent SARS-CoV-2 preservation in the novel medium for 14 days. SARS-CoV-2 was detected in 55.7% of NPS samples and 55.7% of GL samples using rRT-PCR, with an overall agreement of 91.9%. The positive percent agreement (PPA) of the rRT-PCR in the GL samples was 92.7%, and the negative percent agreement (NPA) was 90.9%, compared with the NPS samples. The PPA of the rRT-PCR in the NPS and GL samples was 93.2% when all positive tests were used as the reference standard. Both antigen detection assays showed poor sensitivity compared to rRT-PCR (33.2% and 36.0%). rRT-PCR SARS-CoV-2 detection in self-collected GL samples had a similar PPA and NPA to that of NPSs. GL self-sampling offers a suitable and more comfortable alternative for SARS-CoV-2 detection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Irrigación Terapéutica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de COVID-19 , Sensibilidad y Especificidad , Nasofaringe
7.
bioRxiv ; 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33300000

RESUMEN

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of MICHA (Minimal Information for Chemosensitivity Assays), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents, and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets, and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies, as well as six recently conducted COVID-19 studies. With the MICHA webserver and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA