Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biometeorol ; 65(1): 107-117, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32198562

RESUMEN

The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/epidemiología , Esclerosis Amiotrófica Lateral/epidemiología , Campos Electromagnéticos , Humanos , Enfermedades Neurodegenerativas/epidemiología
2.
Br J Pharmacol ; 178(6): 1257-1268, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32673410

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron neurodegenerative disease. Although it has been classically considered as a disease limited to the motor system, there is increasing evidence for the involvement of other neural and non-neuronal systems. In this review, we will discuss currently existing literature regarding the involvement of the sensory system in ALS. Human studies have reported intradermic small fibre loss, sensory axonal predominant neuropathy, as well as somatosensory cortex hyperexcitability. In line with this, ALS animal studies have demonstrated the involvement of several sensory components. Specifically, they have highlighted the impairment of sensory-motor networks as a potential mechanism for the disease. The elucidation of these "non-motor" systems involvement, which might also be part of the degeneration process, should prompt the scientific community to re-consider ALS as a pure motor neuron disease, which may in turn result in more holistic research approaches. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico , Animales , Humanos , Neuronas Motoras , Corteza Somatosensorial
3.
Br J Pharmacol ; 178(6): 1269-1278, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32497246

RESUMEN

Amyotrophic lateral sclerosis (ALS) commonly referred to as motor neurone disease, is a neurodegenerative disease of unknown pathogenesis that progresses rapidly and has attracted an increased amount of scholarly interest in recent years. The current conception of amyotrophic lateral sclerosis has transitioned into a more complex theory in which individual genetic risk, ageing and environmental factors interact, leading to disease onset in subjects in whom the sum of these factors reach a determined threshold. Based on this conceptualization, the environmental conditions, particularly those that are potentially modifiable, are becoming increasingly relevant. In this review, the current integrative model of the disease is discussed. In addition, we explore the role of cancer, autoimmunity and metabolic diseases as examples of novel, non-genetic and environmental factors. Together with the potential triggers or perpetuating pathogenic mechanisms along with new insights into potential lines of future research are provided. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neoplasias , Enfermedades Neurodegenerativas , Autoinmunidad , Humanos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA