Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 128(25): 5028-5040, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38885649

RESUMEN

Methyl esters are an important component of combustion and atmospheric systems. Reaction with the OH radical plays an important role in the removal of the simplest methyl ester, methyl formate (MF, CH3OCHO). In this paper, the overall rate coefficients for the reactions of OH and OD with MF isotopologues, studied under pseudo-first-order conditions, are reported using two different laser flash photolysis systems with the decay of OH monitored by laser-induced fluorescence. The room-temperature rate coefficient for OH + MF, (1.95 ± 0.34) × 10-13 cm3 molecule-1 s-1, is in good agreement with the literature. The rate coefficient exhibits curved Arrhenius behavior, and our results bridge the gap between previous low-temperature and shock tube studies. In combination with the literature, the rate coefficient for the reaction of OH with MF between 230 and 1400 K can be parametrized as kOH+MF = (3.2 × 10-13) × (T/300 K)2.3 × exp(-141.4 K/T) cm3 molecule-1 s-1 with an overall estimated uncertainty of ∼30%. The reactions of OD with MF isotopologues show a small enhancement (inverse secondary isotope effect) compared to the respective OH reactions. The reaction of OH/OD with MF shows a normal primary isotope effect, a decrease in the rate coefficient when MF is partially or fully deuterated. Experimental studies have been supported by ab initio calculations at the CCSD(T)-F12/aug-cc-pVTZ//M06-2X/6-31+G** level of theory. The calculated, zero-point-corrected, barrier heights for abstraction at the methyl and formate sites are 1.3 and 6.0 kJ mol-1, respectively, and the ab initio predictions of kinetic isotope effects are in agreement with experiment. Fitting the experimental isotopologue data refines these barriers to 0.9 ± 0.6 and 4.1 ± 0.9 kJ mol-1. The branching ratio is approximately 50:50 at 300 K. Between 300 and 500 K, abstraction via the higher-energy, higher-entropy formate transition state becomes more favored (60:40). However, experiment and calculations suggest that as the temperature increases further, with higher energy, less constrained conformers of the methyl transition state become more significant. The implications of the experimental and theoretical results for the mechanisms of MF atmospheric oxidation and low-temperature combustion are discussed.

2.
J Phys Chem A ; 127(4): 1036-1045, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36683280

RESUMEN

Methyl formate (MF) is the smallest carboxylic ester and currently considered a promising alternative fuel. It can also serve as a model compound to study the combustion chemistry of the ester group, which is a typical structural feature in many biodiesel components. In the present work, the pyrolysis of MF was investigated behind reflected shock waves at temperatures between 1430 and 2070 K at a nominal pressure of 1.1 bar. Both time-resolved hydrogen atom resonance absorption spectroscopy (H-ARAS) and time-resolved time-of-flight mass spectrometry (TOF-MS) were used for species detection. Additionally, the reaction of MF and perdeuterated MF-d4 with H atoms was investigated at temperatures between 1000 and 1300 K at nominal pressures of 0.4 and 1.1 bar with H-ARAS. In the latter experiments, ethyl iodide served as precursor for H atoms. Rate coefficients of seven parallel unimolecular decomposition channels of MF and five parallel reaction channels of the MF + H reaction were calculated from statistical rate theory on the basis of molecular and transition state data from quantum chemical calculations. These calculated rate coefficients were implemented into an MF pyrolysis/oxidation mechanism from the literature, and the experimental concentration-time profiles of H (from ARAS) as well as MF, CH3OH, HCHO, and CO (from TOF-MS) were modeled. It turned out that the literature mechanism, which was originally validated against flow-reactor experiments, ignition delay times, and laminar burning velocities, was generally able to fit also the concentration-time profiles from the shock tube experiments reasonably well. The agreement could still be improved by substituting the original rate coefficients, which were estimated from structure-reactivity relationships, by the values calculated from statistical rate theory in the present work. Details of the channel branching are discussed, and the updated mechanism is given, also in machine-readable form.

3.
Faraday Discuss ; 238(0): 665-681, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35796568

RESUMEN

Branching ratios of competing unimolecular reactions often exhibit a complicated temperature and pressure dependence that makes modelling of complex reaction systems in the gas phase difficult. In particular, the competition between steps proceeding via tight and loose transition states is known to present a problem. A recent example from the field of combustion chemistry is the unimolecular decomposition of CH3OCH2OCH3 (DMM), which is discussed as an alternative fuel accessible from sustainable sources. It is shown by a detailed master equation analysis with energy- and angular-momentum-resolved specific rate coefficients from RRKM theory and from the simplified statistical adiabatic channel model, how channel switching of DMM depends on temperature and pressure, and under which experimental conditions which channels prevail. The necessary molecular and energy data were obtained from quantum-chemical calculations at the CCSD(F12*)(T*)/cc-pVQZ-F12//B2PLYP-D3/def2-TZVPP level of theory. A parameterization describing the channel branching over extended ranges of temperature and pressure is derived, and the model is used to simulate shock tube experiments with detection by atomic resonance absorption spectroscopy and time-of-flight mass spectrometry. The agreement between the simulated and experimental concentration-time profiles is very good. The temperature and pressure dependence of the channel branching is rationalized, and the data are presented in a form that can be readily implemented into DMM combustion models.

4.
Nanotechnology ; 31(50): 505302, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021238

RESUMEN

We have studied the capability of He+ focused ion beam (He+-FIB) patterning to fabricate defect arrays on the Si/SiO2/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized 'blister' region of cylindrical symmetry results upon exposing the surface to the stationary focused He+ beam. The topography of the amorphized region depends strongly on the ion dose, DS , (ranging from 103 to 107ions/spot) with craters and holes observed at higher doses. Furthermore, the surface morphology depends on the distance between adjacent irradiated spots, LS . Increasing the dose leads to (enhanced) subsurface amorphization and a local height increase relative to the unexposed regions. At the highest areal ion dose, the average height of a patterned area also increases as ∼1/LS . Correspondingly, in optical micrographs, the µm2-sized patterned surface regions change appearance. These phenomena can be explained by implantation of the He+ ions into the subsurface layers, formation of helium nanobubbles, expansion and modification of the dielectric constant of the patterned material. The corresponding modifications of the terminating graphene monolayer have been monitored by micro Raman imaging. At low ion doses, DS , the graphene becomes modified by carbon atom defects which perturb the 2D lattice (as indicated by increasing D/G Raman mode ratio). Additional x-ray photoionization spectroscopy (XPS) measurements allow us to infer that for moderate ion doses, scattering of He+ ions by the subsurface results in the oxidation of the graphene network. For largest doses and smallest LS values, the He+ beam activates extensive Si/SiO2/C bond rearrangement and a multicomponent material possibly comprising SiC and silicon oxycarbides, SiOC, is observed. We also infer parameter ranges for He+-FIB patterning defect arrays of potential use for pinning transition metal nanoparticles in model studies of heterogeneous catalysis.

5.
Phys Chem Chem Phys ; 21(30): 16658-16664, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31317138

RESUMEN

We present property-tailored all-electron relativistic Karlsruhe basis sets for the elements hydrogen to radon. The modifications described herein use at most four additional primitive basis functions and re-optimized contraction coefficients of the inner-most segment. Thus, the shielding constants are improved while maintaining the compactness of the basis set. A large set of 255 closed-shell molecules was used to assess the quality of the developed bases throughout the periodic table of elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA