Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725160

RESUMEN

Seagrass meadows are threatened by multiple pressures, jeopardizing the many benefits they provide to humanity and biodiversity, including climate regulation and food provision through fisheries production. Conservation of seagrass requires identification of the main pressures contributing to loss and the regions most at risk of ongoing loss. Here, we model trajectories of seagrass change at the global scale and show they are related to multiple anthropogenic pressures but that trajectories vary widely with seagrass life-history strategies. Rapidly declining trajectories of seagrass meadow extent (>25% loss from 2000 to 2010) were most strongly associated with high pressures from destructive demersal fishing and poor water quality. Conversely, seagrass meadow extent was more likely to be increasing when these two pressures were low. Meadows dominated by seagrasses with persistent life-history strategies tended to have slowly changing or stable trajectories, while those with opportunistic species were more variable, with a higher probability of either rapidly declining or rapidly increasing. Global predictions of regions most at risk for decline show high-risk areas in Europe, North America, Japan, and southeast Asia, including places where comprehensive long-term monitoring data are lacking. Our results highlight where seagrass loss may be occurring unnoticed and where urgent conservation interventions are required to reverse loss and sustain their essential services.


Asunto(s)
Efectos Antropogénicos , Rasgos de la Historia de Vida , Modelos Biológicos , Poaceae , Humedales , Geografía , Humanos , Océanos y Mares
2.
Biotechnol Bioeng ; 120(1): 284-296, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36221192

RESUMEN

Immune-mediated hypersensitivities such as autoimmunity, allergy, and allogeneic graft rejection are treated with therapeutics that suppress the immune system, and the lack of specificity is associated with significant side effects. The delivery of disease-relevant antigens (Ags) by carrier systems such as poly(lactide-co-glycolide) nanoparticles (PLG-Ag) and carbodiimide (ECDI)-fixed splenocytes (SP-Ag) has demonstrated Ag-specific tolerance induction in model systems of these diseases. Despite therapeutic outcomes by both platforms, tolerance is conferred with different efficacy. This investigation evaluated Ag loading and total particle dose of PLG-Ag on Ag presentation in a coculture system of dendritic cells (DCs) and Ag-restricted T cells, with SP-Ag employed as a control. CD25 expression was observed in nearly all T cells even at low concentrations of PLG-Ag, indicating efficient presentation of Ag by dendritic cells. However, the secretion of IL-2, Th1, and Th2 cytokines (IFNγ and IL-4, respectively) varied depending on PLG-Ag concentration and Ag loading. Concentration escalation of soluble Ag resulted in an increase in IL-2 and IFNγ and a decrease in IL-4. Treatment with PLG-Ag followed a similar trend but with lower levels of IL-2 and IFNγ secreted. Transcriptional Activity CEll ARrays (TRACER) were employed to measure the real-time transcription factor (TF) activity in Ag-presenting DCs. The kinetics and magnitude of TF activity was dependent on the Ag delivery method, concentration, and Ag loading. Ag positively regulated IRF1 activity and, as carriers, NPs and ECDI-treated SP negatively regulated this signaling. The effect of Ag loading and dose on tolerance induction were corroborated in vivo using the delayed-type hypersensitivity (DTH) and experimental autoimmune encephalomyelitis (EAE) mouse models where a threshold of 8 µg/mg Ag loading and 0.5 mg PLG-Ag dose were required for tolerance. Together, the effect of Ag loading and dosing on in vitro and in vivo immune regulation provide useful insights for translating Ag-carrier systems for the clinical treatment of immune disorders.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Nanopartículas , Animales , Ratones , Linfocitos T , Interleucina-2 , Interleucina-4/uso terapéutico , Antígenos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico
3.
Gastroenterology ; 158(6): 1667-1681.e12, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032584

RESUMEN

BACKGROUND & AIMS: Celiac disease could be treated, and potentially cured, by restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of negatively charged 500-nm poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these nanoparticles by antigen-presenting cells was shown to induce immune tolerance in other animal models of autoimmune disease. METHODS: We performed studies with C57BL/6; RAG1-/- (C57BL/6); and HLA-DQ8, huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in complete Freund's adjuvant (immunization) or of soluble gliadin or ovalbumin (ear challenge). RAG-/- mice were given intraperitoneal injections of CD4+CD62L-CD44hi T cells from gliadin-immunized C57BL/6 mice and were fed with an AIN-76A-based diet containing wheat gluten (oral challenge) or without gluten. Spleen or lymph node cells were analyzed in proliferation and cytokine secretion assays or by flow cytometry, RNA sequencing, or real-time quantitative polymerase chain reaction. Serum samples were analyzed by gliadin antibody enzyme-linked immunosorbent assay, and intestinal tissues were analyzed by histology. Human peripheral blood mononuclear cells, or immature dendritic cells derived from human peripheral blood mononuclear cells, were cultured in medium containing TIMP-GLIA, anti-CD3 antibody, or lipopolysaccharide (controls) and analyzed in proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet activation and aggregation, and complement activation or coagulation were analyzed. RESULTS: TIMP-GLIA did not increase markers of maturation on cultured human dendritic cells or induce activation of T cells from patients with active or treated celiac disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 2), and the gliadin memory T-cell enteropathy (model 3) models of celiac disease, intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T-cell proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had increased levels of FOXP3 and gene expression signatures associated with tolerance induction. CONCLUSIONS: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles induced unresponsiveness to gliadin and reduced markers of inflammation and enteropathy. This strategy might be developed for the treatment of celiac disease.


Asunto(s)
Enfermedad Celíaca/tratamiento farmacológico , Gliadina/administración & dosificación , Tolerancia Inmunológica/efectos de los fármacos , Nanopartículas/administración & dosificación , Administración Intravenosa , Animales , Linfocitos T CD4-Positivos , Enfermedad Celíaca/sangre , Enfermedad Celíaca/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Gliadina/inmunología , Gliadina/toxicidad , Glútenes/administración & dosificación , Glútenes/inmunología , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Humanos , Mucosa Intestinal , Leucocitos Mononucleares , Ratones , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/toxicidad , Poliglactina 910/química , Cultivo Primario de Células , Pruebas de Toxicidad Aguda
4.
AAPS PharmSciTech ; 22(3): 101, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712968

RESUMEN

There is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord. The objective of this mini-review is to highlight the physiological challenges and cell types available for modulation and discuss several promising advancements using NPs to improve SCI treatment. We will focus our discussion on recent innovative approaches in NP drug delivery and how the implementation of multifactorial approaches to address the proinflammatory and complex immune dysfunction in SCI offers significant potential to improve outcomes in SCI.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Humanos
5.
J Am Chem Soc ; 142(31): 13573-13581, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32662645

RESUMEN

The Birch reduction is a powerful synthetic methodology that uses solvated electrons to convert inert arenes to 1,4-cyclohexadienes-valuable intermediates for building molecular complexity. Birch reductions traditionally employ alkali metals dissolved in ammonia to produce a solvated electron for the reduction of unactivated arenes such as benzene (Ered < -3.42 V vs SCE). Photoredox catalysts have been gaining popularity in highly reducing applications, but none have been reported to demonstrate reduction potentials powerful enough to reduce benzene. Here, we introduce benzo[ghi]perylene imides as new organic photoredox catalysts for Birch reductions performed at ambient temperature and driven by visible light from commercially available LEDs. Using low catalyst loadings (<1 mol percent), benzene and other functionalized arenes were selectively transformed to 1,4-cyclohexadienes in moderate to good yields in a completely metal-free reaction. Mechanistic studies support that this unprecedented visible-light-induced reactivity is enabled by the ability of the organic photoredox catalyst to harness the energy from two visible-light photons to affect a single, high-energy chemical transformation.


Asunto(s)
Derivados del Benceno/química , Ciclohexenos/química , Imidas/química , Luz , Perileno/análogos & derivados , Catálisis , Estructura Molecular , Oxidación-Reducción , Perileno/química , Procesos Fotoquímicos
6.
J Phys Chem A ; 124(5): 817-823, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31918550

RESUMEN

Phenothiazine, owing to its ease of oxidation and modularity with respect to facile functionalization, is an attractive central chemical unit from which to construct highly reducing organic photoredox catalysts. While design improvements have been made in the community, the yield of intersystem crossing (ΦISC), which determines access to the long-lived triplet excited state, has yet to be systematically optimized. Herein, we explore the impacts of N-aryl substituent variation on excited-state dynamics using picosecond to millisecond transient absorption and emission spectroscopies. Design principles are uncovered that center on controlling the energy of an intermediate charge transfer (CT) state within the singlet excited-state manifold, which, in turn, dictates the yield of CT-state formation and the rate constants for its depletion. Ultimately, we find ΦISC to be highly sensitive to the electron-withdrawing character of the N-aryl electron acceptor in the aforementioned CT state, with ΦISC ranging from ∼0 to 0.96.

7.
Nanomedicine ; 18: 282-291, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352312

RESUMEN

Autoimmune diseases, such as celiac disease, multiple sclerosis, and type 1 diabetes, are leading causes of morbidity and mortality in the United States. In these disease states, immune regulatory mechanisms fail that result in T and B cell-mediated destruction of self-tissues. The known role of T cells in mediating autoimmune diseases has led to the emergence of numerous therapies aimed at inactivating T cells, however successful 'tolerance-inducing' strategies have not yet emerged for approved standard-of-care clinical use. In this review, we describe relevant examples of antigen-specific tolerance approaches that have been applied in clinical trials for human diseases. Furthermore, we describe the evolution of biomaterial approaches from cell-based therapies to induce immune tolerance with a focus on the Tolerogenic Immune-Modifying nanoParticle (TIMP) platform. The TIMP platform can be designed to treat various autoimmune conditions and is currently in clinical trials testing its ability to reverse celiac disease.


Asunto(s)
Autoinmunidad , Tolerancia Inmunológica , Nanopartículas/química , Animales , Antígenos/inmunología , Apoptosis , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
8.
Proc Natl Acad Sci U S A ; 113(18): 5059-64, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091976

RESUMEN

Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization.


Asunto(s)
Antígenos/administración & dosificación , Antígenos/inmunología , Asma/inmunología , Asma/terapia , Implantes de Medicamentos/administración & dosificación , Nanocápsulas/administración & dosificación , Células Th2/inmunología , Implantes Absorbibles , Animales , Asma/diagnóstico , Femenino , Inmunización/métodos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Poliglactina 910/administración & dosificación , Poliglactina 910/química , Células Th2/efectos de los fármacos , Resultado del Tratamiento
9.
J Am Chem Soc ; 140(14): 4778-4781, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29595966

RESUMEN

A key feature of prominent transition-metal-containing photoredox catalysts (PCs) is high quantum yield access to long-lived excited states characterized by a change in spin multiplicity. For organic PCs, challenges emerge for promoting excited-state intersystem crossing (ISC), particularly when potent excited-state reductants are desired. Herein, we report a design exploiting orthogonal π-systems and an intermediate-energy charge-transfer excited state to maximize ISC yields (ΦISC) in a highly reducing ( E0* = -1.7 V vs SCE), visible-light-absorbing phenoxazine-based PC. Simple substitution of N-phenyl for N-naphthyl is shown to dramatically increase ΦISC from 0.11 to 0.91 without altering catalytically important properties, such as E0*.


Asunto(s)
Compuestos Organometálicos/química , Elementos de Transición/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Teoría Cuántica
10.
J Am Chem Soc ; 140(15): 5088-5101, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29513533

RESUMEN

Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.


Asunto(s)
Oxazinas/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Polimetil Metacrilato/síntesis química , Polimetil Metacrilato/química , Teoría Cuántica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA