Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comput Chem ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795374

RESUMEN

Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO2 conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO2, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO2, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO2 features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO2-based materials and functional interfaces.

2.
Phys Chem Chem Phys ; 26(3): 1602-1607, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165025

RESUMEN

Alkali halides are simple inorganic compounds extensively used as surface modifiers in optoelectronic devices. In perovskite solar cells (PSCs), they act as interlayers between the light absorber material and the charge selective layers improving their contact quality. They introduce surface dipoles that enable the fine tuning of the relative band alignment and passivate surface defects, a well-known drawback of hybrid organic-inorganic perovskites, that is responsible for most of the issues hampering the long-term performances. Reducing the thickness of such salt-based insulating layer might be beneficial in terms of charge transfer between the perovskite and the electron/hole transport layers. In this context, here we apply density functional theory (DFT) to characterize the structure and the electronic features of atom-thin layers of NaCl adsorbed on the methylammonium lead iodide (MAPI) perovskite. We analyze two different models of MAPI surface terminations and find unexpected structural reconstructions arising at the interface. Unexpectedly, we find an exotic honeycomb-like structuring of the salt, also recently observed in experiments on a diamond substrate. We also investigate how the salt affects the perovskite electronic properties that are key to control the charge dynamics at the interface. Moreover, we also assess the salt ability to improve the defect tolerance of the perovskite surface. With these results, we derive new hints regarding the potential benefits of using an atom-thin layer of alkali halides in PSCs.

3.
Small ; 19(46): e2303575, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37452442

RESUMEN

The perovskite-inspired Cu2 AgBiI6 (CABI) material has been gaining increasing momentum as photovoltaic (PV) absorber due to its low toxicity, intrinsic air stability, direct bandgap, and a high absorption coefficient in the range of 105  cm-1 . However, the power conversion efficiency (PCE) of existing CABI-based PVs is still seriously constrained by the presence of both intrinsic and surface defects. Herein, antimony (III) (Sb3+ ) is introduced into the octahedral lattice sites of the CABI structure, leading to CABI-Sb with larger crystalline domains than CABI. The alloying of Sb3+ with bismuth (III) (Bi3+ ) induces changes in the local structural symmetry that dramatically increase the formation energy of intrinsic defects. Light-intensity dependence and electron impedance spectroscopic studies show reduced trap-assisted recombination in the CABI-Sb PV devices. CABI-Sb solar cells feature a nearly 40% PCE enhancement (from 1.31% to 1.82%) with respect to the CABI devices mainly due to improvement in short-circuit current density. This work will promote future compositional design studies to enhance the intrinsic defect tolerance of next-generation wide-bandgap absorbers for high-performance and stable PVs.

4.
Phys Chem Chem Phys ; 25(28): 18623-18641, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37404199

RESUMEN

Post-lithium batteries are emerging as viable solutions for sustainable energy transition. Effective deployment in the market calls for great research efforts in the identification of novel component materials and the assessment of related working principles. Computational modelling can be a key player in boosting innovation and development by enabling rational strategies for the design of appropriately tuned materials with optimized activity towards battery operating processes. By gaining access to the structural and electronic features of functional electrodes, state-of-the-art DFT methods can unveil the subtle structure-property relationship that affects the uptake, transport, and storage efficiency. Hereby, we aim at reviewing the research status of theoretical advances in the field of Na-ion batteries (NIBs) and illustrating to what extent atomistic insights into sodiation/desodiation mechanisms of nanostructured materials can assist the development of effective anodes and cathodes for stable and highly performing devices. Thanks to increasing computer power and fruitful cooperation between theory and experiments, the route for effective design methodologies is being paved and will feed the upcoming developments in NIB technology.

5.
Phys Chem Chem Phys ; 24(24): 14993-15002, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687061

RESUMEN

Recently, great research efforts have been devoted to perovskite solar cells (PSCs) leading to sunlight-to-power conversion efficiencies above 25%. However, several barriers still hinder the full deployment of these devices. Critical issues are related to PCE stability and device lifetimes, which could be improved by targeted engineering of the hole transport material (HTM). Indeed, the HTM is not only responsible for transporting holes and preventing direct contact between the photo-active perovskite and the charge collector layer, but it plays important structural and protective roles too. As alternatives to the widely used yet expensive and unstable Spiro-OMeTAD, organic HTMs based on triphenylamine (TPA) and phenothiazine (PTZ) moieties have been proposed. However, their performances in PSC devices, and in particular their interfacial properties with the most popular methylammonium lead iodide perovskite (MAPI) still need investigations to be fully determined. In this framework, here we report a first-principles study on the structural and the electronic properties of a recently designed TPA and PTZ-based HTM (HTM1) and its interface with the MAPI (001) surface, considering both the PbI2- and the MAI-terminations. We also addressed already known HTM molecular systems to allow for a direct comparison with the recently proposed HTM1: we characterized the molecular parameters and the MAPI/HTM interfacial properties for Spiro-OMeTAD, PTZ1, and PTZ2. Our results suggest that good adhesion properties do not ensure effective and efficient MAPI-HTM hole injection. Despite the theoretical good alignment between HTM1 HOMO and MAPI valence band edge, our results for the mutually polarized interface point out the lack of a sufficient driving force for hole transport. While the hole mobility of HTM1 outperforms those of the other HTM molecules, for this HTM molecule, our findings suggest the application of lead halide perovskite compositions other than MAPI, with substituents that lower its valence band maximum potential value.

6.
J Comput Chem ; 41(22): 1946-1955, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32633886

RESUMEN

We present a first-principles study on the structure-property relationships in MoS2 and WS2 monolayers and their vertically stacked hetero-bilayer, with and without Sulfur vacancies, in order to dissect the electronic features behind their photocatalytic water splitting capabilities. We also benchmark the accuracy of three different exchange-correlation density functionals for both minimum-energy geometries and electronic structure. The best compromise between computational cost and qualitative accuracy is achieved with the HSE06 density functional on top of Perdew-Burke-Ernzerhof minima, including dispersion with Grimme's D3 scheme. This computational approach predicts the presence of mid-gap states for defective monolayers, in accordance with the present literature. For the heterojunction, we find unexpected vacancy-position dependent electronic features: the location of the defects leads either to mid-gap trap states, detrimental for photocatalyst or to a modification of characteristic type II band alignment behavior, responsible for interlayer charge separation and low recombination rates.

7.
Phys Chem Chem Phys ; 22(48): 28401-28413, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33305297

RESUMEN

Perovskite solar cells (PSCs) represent a promising technology for highly efficient sunlight harvesting and its conversion to electricity at convenient costs. However, a few flaws of current devices undermine the long-term stability of PSCs. Some of them concern the interface between the photoactive perovskite and the hole transport layer (HTL), e.g. undesired charge recombination, polarization barriers and oxidation processes. A strategy to solve this problem is to replace the standard organic HTL (e.g. Spiro-OMeTAD) with a solid-state inorganic layer. Being extensively used in p-type dye sensitized solar cells (DSSCs), nickel oxide (NiO) has been the first choice as an inorganic HTL. Despite the great interests in the application of NiO and other p-type oxides in PSCs, there is no available atomistic model of their interface with a halide perovskite. Here, we address this knowledge gap via a thorough first-principles study of the prototypical PSC perovskite methyl-ammonium lead iodide (MAPI) and two inorganic p-type oxides: NiO and CuGaO2. This copper-gallium delafossite oxide is one of the most promising alternatives to NiO in p-type DSSCs, thanks to its wide optical bandgap and low valence band edge. Here, we characterize the properties of both isolated surface slabs and MAPI/HTL heterostructure models. Besides considering MAPI/NiO and MAPI/CuGaO2 interfaces from the pristine materials, we also address the effects of intrinsic and extrinsic p-type defects in both NiO (Ni vacancy, Ni vacancy with Li and Ag doping) and CuGaO2 (Cu vacancy) using more realistic models. Our study reveals the most convenient interfaces in terms of structural affinities and adhesion energies. From the electronic perspective, we present a detailed analysis on band edge alignments, with direct insights into the key functional parameters of PSCs: hole injection driving force and open circuit potential. Our data show how the presence of defects/dopants is crucial for a convenient hole injection in NiO and CuGaO2. These results provide new science-based design principles for further development of p-type oxides in PSC devices.

8.
J Phys Chem C Nanomater Interfaces ; 128(23): 9446-9453, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894751

RESUMEN

Perovskite-inspired materials (PIMs) provide low-toxicity and air-stable photo-absorbers for several possible optoelectronic devices. In this context, the pnictogen-based halides Cu2AgBiI6 (CABI) are receiving increasing attention in photovoltaics. Despite extensive studies on power conversion efficiency and shelf-life stability, nearly no attention has been given to the physicochemical properties of the interface between CABI and the hole transport layer (HTL), which can strongly impact overall cell operations. Here, we address this specific interface with three polymeric HTLs: poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD), thiophene-(poly(3-hexylthiophene)) (P3HT), and poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA). Our findings reveal that devices fabricated with poly-TPD and P3HT outperform the commonly used Spiro-OMeTAD in terms of device operational stability, while PTAA exhibits worse performances. Density functional theory calculations unveil the electronic and chemical interactions at the CABI-HTL interfaces, providing new insights into observed experimental behaviors. Our study highlights the importance of addressing the buried interfaces in PIM-based devices to enhance their overall performance and stability.

9.
ACS Appl Mater Interfaces ; 16(15): 19026-19038, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569595

RESUMEN

Cu2AgBiI6 (CABI) is a promising perovskite-inspired absorber for solar cells due to its direct band gap and high absorption coefficient. However, the nonradiative recombination caused by the high extrinsic trap density limits the performance of CABI-based solar cells. In this work, we employ halide engineering by doping bromide anions (Br-) in CABI thin films, in turn significantly improving the power conversion efficiency (PCE). By introducing Br- in the synthetic route of CABI thin films, we identify the optimum composition as CABI-10Br (with 10% Br at the halide site). The tailored composition appears to reduce the deep trap density as shown by time-resolved photoluminescence and transient absorption spectroscopy characterizations. This leads to a dramatic increase in the lifetime of charge carriers, which therefore improves both the external quantum efficiency and the integrated short-circuit current. The photovoltaic performance shows a significant boost since the PCE under standard 1 sun illumination increases from 1.32 to 1.69% (∼30% relative enhancement). Systematic theoretical and experimental characterizations were employed to investigate the effect of Br- incorporation on the optoelectronic properties of CABI. Our results highlight the importance of mitigating trap states in lead-free perovskite-inspired materials and that Br- incorporation at the halide site is an effective strategy for improving the device performance.

10.
Chem Commun (Camb) ; 59(34): 5055-5058, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37039093

RESUMEN

The main stability and performance issues of perovskite solar cells arise from the interfaces between the perovskite and the hole transport material. Here we address these interface issues by means of state-of-the-art first-principles calculations, providing new insights into charge transfer times and mechanisms and how they depend on the perovskite chemical composition and local interfacial environment.

11.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013837

RESUMEN

Perovskite solar cells (PSCs) and dye-sensitized solar cells (DSCs) both represent promising strategies for the sustainable conversion of sunlight into electricity and fuels. However, a few flaws of current devices hinder the large-scale establishment of such technologies. On one hand, PSCs suffer from instabilities and undesired phenomena mostly linked to the perovskite/hole transport layer (HTL) interface. Most of the currently employed organic HTL (e.g., Spiro-OMeTAD) are supposed to contribute to the perovskite decomposition and to be responsible for charge recombination processes and polarization barriers. On the other hand, power conversion efficiencies (PCEs) of DSCs are still too low to compete with other conversion technologies. Tandem cells are built by assembling p-type and n-type DSCs in a cascade architecture and, since each dye absorbs on a different portion of the solar spectrum, the harvesting window is increased and the theoretical efficiency limit for a single chromophore (i.e., the Shockley-Queisser limit) is overcome. However, such a strategy is hindered by the lack of a p-type semiconductor with optimal photocathode features. Nickel oxide has been, by far, the first-choice inorganic p-type semiconductor for both PV technologies, but its toxicity and non-optimal features (e.g., too low open circuit voltage and the presence of trap states) call for alternatives. Herein, we study of three p-type semiconductors as possible alternative to NiO, namely CuI, CuSCN and Cu2O. To this aim, we compare the structural and electronic features of the three materials by means of a unified theoretical approach based on the state-of-the art density functional theory (DFT). We focus on the calculation of their valence band edge energies and compare such values with those of two widely employed photo-absorbers, i.e., methylammonium lead iodide (MAPI) and the triple cation MAFACsPbBrI in PSCs and P1 and Y123 dyes in DSCs, given that the band alignment and the energy offset are crucial for the charge transport at the interfaces and have direct implications on the final efficiency. We dissect the effect a copper vacancy (i.e., intrinsic p-type doping) on the alignment pattern and rationalize it from both a structural and an electronic perspective. Our data show how defects can represent a crucial degree of freedom to control the driving force for hole injection in these devices.

12.
J Phys Chem C Nanomater Interfaces ; 125(4): 2276-2286, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33584936

RESUMEN

Na-ion batteries (NIBs) are emerging as promising energy storage devices for large-scale applications. Great research efforts are devoted to design new effective NIB electrode materials, especially for the anode side. A hybrid 2D heterojunction with graphene and MoS2 has been recently proposed for this purpose: while MoS2 has shown good reversible capacity as a NIB anode, graphene is expected to improve conductivity and resistance to mechanical stress upon cycling. The most relevant processes for the anode are the intercalation and diffusion of the large Na ion, whose complex mechanisms are determined by the structural and electronic features of the MoS2/graphene interface. Understanding these processes and mechanisms is crucial for developing new nanoscale anodes for NIBs with high performances. To this end, here we report a state-of-the-art DFT study to address (a) the structural and electronic properties of heterointerfaces between the MoS2 monolayers and graphene, (b) the most convenient insertion sites for Na, and (c) the possible diffusion paths along the interface and the corresponding energy barrier heights. We considered two MoS2 polymorphs: 1T and 3R. Our results show that 1T-MoS2 interacts more strongly with graphene than 3R-MoS2. In both cases, the best Na host site is found at the MoS2 side of the interface, and the band structure reveals a proper n-type character of the graphene moiety, which is responsible for electronic conduction. Minimum-energy paths for Na diffusion show very low barrier heights for the 3R-MoS2/graphene interface (<0.25 eV) and much higher values for its 1T counterpart (∼0.7 eV). Analysis of structural features along the diffusion transition states allows us to identify the strong coordination of Na with the exposed S atoms as the main feature hindering an effective diffusion in the 1T case. These results provide new hints on the physicochemical details of Na intercalation and diffusion mechanisms at complex 2D heterointerfaces and will help further development of advanced electrode materials for efficient NIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA