Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(4)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37848022

RESUMEN

In the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage. ThisFocus Issuespotlights cutting-edge research that explores the intersection of nanomaterials and sustainability. The collection delves deep into this critical nexus, encompassing a wide range of topics, from fundamental properties to applications in devices (e.g. sensors, optoelectronic synapses, energy harvesters, memory components, energy storage devices, and batteries), aspects concerning circularity and green synthesis, and an array of materials comprising organic semiconductors, perovskites, quantum dots, nanocellulose, graphene, and two-dimensional semiconductors. Authors not only showcase advancements but also delve into the sustainability profile of these materials, fostering a responsible endeavour toward a green IoT future.

2.
Small ; 18(35): e2203768, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35808963

RESUMEN

Lead-free perovskite-inspired materials (PIMs) are gaining attention in optoelectronics due to their low toxicity and inherent air stability. Their wide bandgaps (≈2 eV) make them ideal for indoor light harvesting. However, the investigation of PIMs for indoor photovoltaics (IPVs) is still in its infancy. Herein, the IPV potential of a quaternary PIM, Cu2 AgBiI6 (CABI), is demonstrated upon controlling the film crystallization dynamics via additive engineering. The addition of 1.5 vol% hydroiodic acid (HI) leads to films with improved surface coverage and large crystalline domains. The morphologically-enhanced CABI+HI absorber leads to photovoltaic cells with a power conversion efficiency of 1.3% under 1 sun illumination-the highest efficiency ever reported for CABI cells and of 4.7% under indoor white light-emitting diode lighting-that is, within the same range of commercial IPVs. This work highlights the great potential of CABI for IPVs and paves the way for future performance improvements through effective passivation strategies.

3.
Nature ; 515(7527): 384-8, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25383522

RESUMEN

Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder. This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended π-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor-acceptor copolymer with a near-amorphous microstructure, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for 'disorder-free' conjugated polymers.

4.
Nanoscale ; 15(36): 14764-14773, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37646120

RESUMEN

The study of surface defects is one of the forefronts of halide perovskite research. In the nanoscale regime, where the surface-to-volume ratio is high, the surface plays a key role in determining the electronic properties of perovskites. Perovskite-inspired silver iodobismuthates are promising photovoltaic absorbers. Herein, we demonstrate the colloidal synthesis of phase pure and highly crystalline AgBiI4 nanocrystals (NCs). Surface-sensitive spectroscopic techniques reveal the rich surface features of the NCs that enable their impressive long-term environmental and thermal stabilities. Notably, the surface termination and its passivation effects on the electronic properties of AgBiI4 are investigated. Our atomistic simulations suggest that a bismuth iodide-rich surface, as in the case of AgBiI4 NCs, does not introduce surface trap states within the band gap region of AgBiI4, unlike a silver iodide-rich surface. These findings may encourage the investigation of surfaces of other lead-free perovskite-inspired materials.

5.
Nanomicro Lett ; 12(1): 27, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34138255

RESUMEN

In recent years, solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications. In particular, silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements. This study investigates the potential of Ag2BiI5 for near-infrared (NIR)-blind visible light photodetection, which is critical to emerging applications (e.g., wearable optoelectronics and the Internet of Things). Self-powered photodetectors were realized and provided a near-constant ≈ 100 mA W-1 responsivity through the visible, a NIR rejection ratio of > 250, a long-wavelength responsivity onset matching standard colorimetric functions, and a linear photoresponse of > 5 orders of magnitude. The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode. This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.

6.
ACS Nano ; 14(10): 14036-14046, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32924510

RESUMEN

The development of ultralow-power and easy-to-fabricate electronics with potential for large-scale circuit integration (i.e., complementary or complementary-like) is an outstanding challenge for emerging off-the-grid applications, e.g., remote sensing, "place-and-forget", and the Internet of Things. Herein we address this challenge through the development of ambipolar transistors relying on solution-processed polymer-sorted semiconducting carbon nanotube networks (sc-SWCNTNs) operating in the deep-subthreshold regime. Application of self-assembled monolayers at the active channel interface enables the fine-tuning of sc-SWCNTN transistors toward well-balanced ambipolar deep-subthreshold characteristics. The significance of these features is assessed by exploring the applicability of such transistors to complementary-like integrated circuits, with respect to which the impact of the subthreshold slope and flatband voltage on voltage and power requirements is studied experimentally and theoretically. As demonstrated with inverter and NAND gates, the ambipolar deep-subthreshold sc-SWCNTN approach enables digital circuits with complementary-like operation and characteristics including wide noise margins and ultralow operational voltages (≤0.5 V), while exhibiting record-low power consumption (≤1 pW/µm). Among thin-film transistor technologies with minimal material complexity, our approach achieves the lowest energy and power dissipation figures reported to date, which are compatible with and highly attractive for emerging off-the-grid applications.

7.
ACS Appl Mater Interfaces ; 11(44): 41531-41543, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31597420

RESUMEN

Silver ink is the most widely used conductive material for printing electrodes in the fabrication of all-printed ion gel gated transistors because of their high conductivity and low cost. However, electrochemical instability of printed silver electrodes is generally one of the biggest issues, whether it is in air where silver gets oxidized or in a moisture environment where electrochemical migration occurs. Notwithstanding, the electrochemical stability of printed silver electrodes in ion gel medium has not been studied so far. In this work, we studied the electrochemical instabilities of printed silver electrodes in fully printed ion gel gated single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) and developed some strategies to overcome these issues. All-printed ion gel-based p-type SWCNT TFTs were employed to investigate the impact of electrochemical instabilities on the electrical behavior of printed SWCNT TFTs. The results have demonstrated that printed silver was unstable at anodic and cathodic polarization because of the corrosion by the ionic liquid. Besides, anodic corrosion of silver source/drain electrodes was shown to be responsible for the electrical failure of printed SWCNT TFTs in both the linear and saturated regime. These issues were completely resolved when preventing printed silver electrodes from coming into direct contact with ion gels. For example, ion gels were partially printed in device channels to avoid contacting the printed silver source and drain electrodes. At the same time, silver side-gate electrodes were replaced by inkjet-printed PEDOT:PSS electrodes to avoid gate electrode-related instabilities. Consequently, all-printed electrochemically stable SWCNT TFTs fabricated were obtained with enhanced performance of higher ION/IOFF ratios (105 to 106), smaller subthreshold slopes (∼70 mV/dec), and smaller hysteresis (ΔV = 0.025 V) at gate voltages from 1.2 to -0.5 V. Additionally, the polarity of all-printed SWCNT TFTs was converted from the p-channel to ambipolar while achieving lower leakage currents.

8.
ACS Appl Mater Interfaces ; 10(18): 15847-15854, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29648790

RESUMEN

A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 µm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 108, maximum mobility of 3.3 cm2 V-1 s-1, negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

9.
Adv Mater ; 29(47)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29065226

RESUMEN

The last decade has witnessed the rapid development of inkjet printing as an attractive bottom-up microfabrication technology due to its simplicity and potentially low cost. The wealth of printable materials has been key to its widespread adoption in organic optoelectronics and biotechnology. However, its implementation in nanophotonics has so far been limited by the coarse resolution of conventional inkjet-printing methods. In addition, the low refractive index of organic materials prevents the use of "soft-photonics" in applications where strong light confinement is required. This study introduces a hybrid approach for creating and fine tuning high-Q nanocavities, involving the local deposition of an organic ink on the surface of an inorganic 2D photonic crystal template using a commercially available high-resolution inkjet printer. The controllability of this approach is demonstrated by tuning the resonance of the printed nanocavities by the number of printer passes and by the fabrication of photonic crystal molecules with controllable splitting. The versatility of this method is evidenced by the realization of nanocavities obtained by surface deposition on a blank photonic crystal. A new method for a free-form, high-density, material-independent, and high-throughput fabrication technique is thus established with a manifold of opportunities in photonic applications.

10.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28397305

RESUMEN

Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications.

11.
ACS Appl Mater Interfaces ; 9(14): 12750-12758, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28337913

RESUMEN

The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 106, effective mobility up to 30 cm2 V-1 s-1, small hysteresis, and small subthreshold swing (90-140 mV dec-1), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 Vdd = 1 V) and a voltage gain as high as 30 (at Vdd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 µW at Vdd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.

12.
Adv Mater ; 28(23): 4713-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27059526

RESUMEN

A method based on scanning Kelvin probe microscopy is developed to probe the effects of minority carriers on the switching characteristics of organic field-effect transistors. The mobility of the minority carriers is extracted and the role they play in screening of the gate potential in the OFF state and in recombination of trapped majority carriers trapped after an ON state is understood.

13.
Adv Mater ; 26(5): 728-33, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24170627

RESUMEN

A general semiconductor-independent two-dimensional character of the carrier distribution in top-gate polymer field-effect transistors is revealed by analysing temperature-dependent transfer characteristics and the sub-bandgap absorption tails of the polymer semiconductors. A correlation between the extracted width of the density of states and the Urbach energy is presented, corroborating the 2D accumulation layer and demonstrating an intricate connection between optical measurements concerning disorder and charge transport in transistors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA