Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 116(12): 7078-116, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27228560

RESUMEN

The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

2.
Chem Rev ; 116(13): 7698-726, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27232062

RESUMEN

The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

3.
J Chem Phys ; 149(7): 072327, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134662

RESUMEN

Ice nucleation plays a significant role in a large number of natural and technological processes, but it is challenging to investigate experimentally because of the small time scales (ns) and short length scales (nm) involved. On the other hand, conventional molecular simulations struggle to cope with the relatively long time scale required for critical ice nuclei to form. One way to tackle this issue is to take advantage of free energy or path sampling techniques. Unfortunately, these are computationally costly. Seeded molecular dynamics is a much less demanding alternative that has been successfully applied already to study the homogeneous freezing of water. However, in the case of heterogeneous ice nucleation, nature's favourite route to form ice, an array of suitable interfaces between the ice seeds and the substrate of interest has to be built, and this is no trivial task. In this paper, we present a Heterogeneous SEEDing (HSEED) approach which harnesses a random structure search framework to tackle the ice-substrate challenge, thus enabling seeded molecular dynamics simulations of heterogeneous ice nucleation on crystalline surfaces. We validate the HSEED framework by investigating the nucleation of ice on (i) model crystalline surfaces, using the coarse-grained mW model, and (ii) cholesterol crystals, employing the fully atomistic TIP4P/ice water model. We show that the HSEED technique yields results in excellent agreement with both metadynamics and forward flux sampling simulations. Because of its computational efficiency, the HSEED method allows one to rapidly assess the ice nucleation ability of whole libraries of crystalline substrates-a long-awaited computational development in, e.g., atmospheric science.

4.
Nat Mater ; 14(9): 904-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26076306

RESUMEN

High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.


Asunto(s)
Partículas beta , Electrones , Oro/química , Membranas Artificiales , Isótopos de Yodo/química
5.
J Chem Phys ; 145(21): 211927, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-28799377

RESUMEN

The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

6.
Nat Commun ; 11(1): 4777, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963232

RESUMEN

Water in nature predominantly freezes with the help of foreign materials through a process known as heterogeneous ice nucleation. Although this effect was exploited more than seven decades ago in Vonnegut's pioneering cloud seeding experiments, it remains unclear what makes a material a good ice former. Here, we show through a machine learning analysis of nucleation simulations on a database of diverse model substrates that a set of physical descriptors for heterogeneous ice nucleation can be identified. Our results reveal that, beyond Vonnegut's connection with the lattice match to ice, three new microscopic factors help to predict the ice nucleating ability. These are: local ordering induced in liquid water, density reduction of liquid water near the surface and corrugation of the adsorption energy landscape felt by water. With this we take a step towards quantitative understanding of heterogeneous ice nucleation and the in silico design of materials to control ice formation.

7.
Nat Commun ; 11(1): 1689, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245956

RESUMEN

The diffusion of water molecules and clusters across the surfaces of materials is important to a wide range of processes. Interestingly, experiments have shown that on certain substrates, water dimers can diffuse more rapidly than water monomers. Whilst explanations for anomalously fast diffusion have been presented for specific systems, the general underlying physical principles are not yet established. We investigate this through a systematic ab initio study of water monomer and dimer diffusion on a range of surfaces. Calculations reveal different mechanisms for fast water dimer diffusion, which is found to be more widespread than previously anticipated. The key factors affecting diffusion are the balance of water-water versus water-surface bonding and the ease with which hydrogen-bond exchange can occur (either through a classical over-the-barrier process or through quantum-mechanical tunnelling). We anticipate that the insights gained will be useful for understanding future experiments on the diffusion and clustering of hydrogen-bonded adsorbates.

8.
Chem Sci ; 9(42): 8077-8088, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30542556

RESUMEN

Organic molecules such as steroids or amino acids form crystals that can facilitate the formation of ice - arguably the most important phase transition on earth. However, the origin of the ice nucleating ability of organic crystals is still largely unknown. Here, we combine experiments and simulations to unravel the microscopic details of ice formation on cholesterol, a prototypical organic crystal widely used in cryopreservation. We find that cholesterol - which is also a substantial component of cell membranes - is an ice nucleating agent more potent than many inorganic substrates, including the mineral feldspar (one of the most active ice nucleating materials in the atmosphere). Scanning electron microscopy measurements reveal a variety of morphological features on the surfaces of cholesterol crystals: this suggests that the topography of the surface is key to the broad range of ice nucleating activity observed (from -4 to -20 °C). In addition, we show via molecular simulations that cholesterol crystals aid the formation of ice nuclei in a unconventional fashion. Rather than providing a template for a flat ice-like contact layer (as found in the case of many inorganic substrates), the flexibility of the cholesterol surface and its low density of hydrophilic functional groups leads to the formation of molecular cages involving both water molecules and terminal hydroxyl groups of the cholesterol surface. These cages are made of 6- and, surprisingly, 5-membered hydrogen bonded rings of water and hydroxyl groups that favour the nucleation of hexagonal as well as cubic ice (a rare occurrence). We argue that the phenomenal ice nucleating activity of steroids such as cholesterol (and potentially of many other organic crystals) is due to (i) the ability of flexible hydrophilic surfaces to form unconventional ice-templating structures and (ii) the different nucleation sites offered by the diverse topography of the crystalline surfaces. These findings clarify how exactly organic crystals promote the formation of ice, thus paving the way toward deeper understanding of ice formation in soft and biological matter - with obvious reverberations on atmospheric science and cryobiology.

9.
Science ; 355(6323): 367-371, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27940582

RESUMEN

Ice formation on aerosol particles is a process of crucial importance to Earth's climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)-feldspar particles.

10.
J Phys Chem C Nanomater Interfaces ; 120(12): 6704-6713, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27917255

RESUMEN

Feldspar minerals are the most common rock formers in Earth's crust. As such they play an important role in subjects ranging from geology to climate science. An atomistic understanding of the feldspar structure and its interaction with water is therefore desirable, not least because feldspar has been shown to dominate ice nucleation by mineral dusts in Earth's atmosphere. The complexity of the ice/feldspar interface arising from the numerous chemical motifs expressed on the surface makes it a challenging system. Here we report a comprehensive study of this challenging system with ab initio density functional theory calculations. We show that the distribution of Al atoms, which is crucial for the dissolution kinetics of tectosilicate minerals, differs significantly between the bulk environment and on the surface. Furthermore, we demonstrate that water does not form ice-like overlayers in the contact layer on the most easily cleaved (001) surface of K-feldspar. We do, however, identify contact layer structures of water that induce ice-like ordering in the second overlayer. This suggests that even substrates without an apparent match with the ice structure may still act as excellent ice nucleating agents.

11.
ACS Nano ; 10(2): 2152-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26735687

RESUMEN

Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA