RESUMEN
BACKGROUND: Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer. METHODS: We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines. RESULTS: The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets. CONCLUSIONS: These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.
Asunto(s)
Tumor Carcinoide , Neoplasias Pulmonares , Humanos , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patología , Neoplasias Pulmonares/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Factores de Empalme de ARN/genética , Biomarcadores/metabolismo , Biología , Pulmón/patología , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Antígeno Ventral Neuro-OncológicoRESUMEN
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Asunto(s)
Tumores Neuroendocrinos , ARN , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patologíaRESUMEN
OBJECTIVES: To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS: Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS: An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS: Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.
Asunto(s)
Empalme Alternativo , Artritis Reumatoide/sangre , Artritis Reumatoide/genética , ARN/sangre , Empalmosomas , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Empalme Alternativo/efectos de los fármacos , Animales , Anticuerpos Antiproteína Citrulinada/farmacología , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Estudios de Casos y Controles , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citrulinación , Citocinas/farmacología , Proteínas de Unión al ADN/genética , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Linfocitos , Masculino , Ratones , Persona de Mediana Edad , Monocitos , Neutrófilos , ARN/metabolismo , Factores de Empalme de ARN/genética , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Análisis de Secuencia de ARN , Factores de Empalme Serina-Arginina/genética , Factor de Empalme U2AF/genética , Líquido Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.
Asunto(s)
Neuropéptidos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Andrógenos , Receptores de Somatostatina/genética , Somatostatina/metabolismo , Neuropéptidos/metabolismo , Línea Celular Tumoral , Proliferación CelularRESUMEN
Glioblastomas remain the deadliest brain tumour, with a dismal â¼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness. Here, we identify for the first time a profound dysregulation in the expression of relevant spliceosome components and splicing factors (at mRNA and protein levels) in well characterized cohorts of human high-grade astrocytomas, mostly glioblastomas, compared to healthy brain control samples, being SRSF3, RBM22, PTBP1 and RBM3 able to perfectly discriminate between tumours and control samples, and between proneural-like or mesenchymal-like tumours versus control samples from different mouse models with gliomas. Results were confirmed in four additional and independent human cohorts. Silencing of SRSF3, RBM22, PTBP1 and RBM3 decreased aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere-formation, etc.) and induced apoptosis, especially SRSF3. Remarkably, SRSF3 was correlated with patient survival and relevant tumour markers, and its silencing in vivo drastically decreased tumour development and progression, likely through a molecular/cellular mechanism involving PDGFRB and associated oncogenic signalling pathways (PI3K-AKT/ERK), which may also involve the distinct alteration of alternative splicing events of specific transcription factors controlling PDGFRB (i.e. TP73). Altogether, our results demonstrate a drastic splicing machinery-associated molecular dysregulation in glioblastomas, which could potentially be considered as a source of novel diagnostic and prognostic biomarkers as well as therapeutic targets for glioblastomas. Remarkably, SRSF3 is directly associated with glioblastoma development, progression, aggressiveness and patient survival and represents a novel potential therapeutic target to tackle this devastating pathology.
Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Factores de Empalme Serina-Arginina/genética , Empalme Alternativo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/mortalidad , Movimiento Celular , Proliferación Celular , Silenciador del Gen , Glioblastoma/mortalidad , Humanos , Invasividad Neoplásica/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Análisis de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Neuroendocrine tumors (NETs) comprise a complex and highly heterogeneous group of neoplasms that can arise all over the body, originating from neuroendocrine cells. NETs are characterized by a general lack of symptoms until they are in advanced phase, and early biomarkers are not as available and useful as required. Heterogeneity is an intrinsic, pivotal feature of NETs that derives from diverse causes and ultimately shapes tumor fate. The different layers that conform NET heterogeneity include a wide range of distinct characteristics, from the mere location of the tumor to its clinical and functional features, and from its cellular properties, to the core signaling and (epi)genetic components defining the molecular signature of the tumor. The importance of this heterogeneity resides in that it translates into a high variability among tumors and, hence, patients, which hinders a more precise diagnosis and prognosis and more efficacious treatment of these diseases. In this review, we highlight the significance of this heterogeneity as an intrinsic hallmark of NETs, its repercussion on clinical approaches and tumor management, and some of the possible factors associated to such heterogeneity, including epigenetic and genetic elements, post-transcriptional regulation, or splicing alterations. Notwithstanding, heterogeneity can also represent a valuable and actionable feature, towards improving medical approaches based on personalized medicine. We conclude that NETs can no longer be viewed as a single disease entity and that their diagnosis, prognosis and treatment must reflect and incorporate this heterogeneity.
Asunto(s)
Tumores Neuroendocrinos , Humanos , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/terapiaRESUMEN
BACKGROUND: Prostate cancer (PCa) is a highly prevalent neoplasia that is strongly influenced by the endocrine system. Somatostatin (SST) and its five receptors (sst1-5 encoded by SSTR1-5 genes) comprise a pleiotropic system present in most endocrine-related cancers, some of which are successfully treated with SST analogs. Interestingly, it has been reported that SSTR1 is overexpressed in PCa, but its regulation, functional role, and clinical implications are still poorly known. METHODS: PCa specimens (n = 52) from biopsies and control prostates from cystoprostatectomies (n = 12), as well as in silico databases were used to evaluate SSTR1 and miRNAs expression. In vitro studies in 22Rv1 PCa cells were implemented to explore the regulation of SSTR1/sst1 by different miRNAs, and to evaluate the consequences of SSTR1/sst1 overexpression, silencing and/or activation [with the specific BIM-23926 sst1 agonist (IPSEN)] on cell-proliferation, migration, signaling-pathways, and androgen-signaling. RESULTS: We found that SSTR1 is overexpressed in multiple cohorts of PCa samples, as compared with normal prostate tissues, wherein it correlates with androgen receptor (AR) expression, and appears to be associated with aggressiveness (metastasis). Furthermore, our data revealed that SSTR1/sst1 expression might be regulated by specific miRNAs in PCa, including miR-24, which is downregulated in PCa samples and correlates inversely with SSTR1 expression. In vitro studies indicated that treatment with the BIM-23926 sst1 agonist, as well as SSTR1 overexpression, decreased, whereas SSTR1 silencing increased, cell-proliferation in 22Rv1 cells, likely through the regulation of PI3K/AKT-CCND3 signaling-pathway. Importantly, sst1 action was also able to modulate androgen/AR activity, and reduced PSA secretion from PCa cell lines. CONCLUSIONS: Altogether, our results indicate that SSTR1 is overexpressed in PCa, where it can exert a relevant pathophysiological role by decreasing cell-proliferation and PSA secretion. Therefore, sst1, possibly in combination with miR-24, could be used as a novel tool to explore therapeutic targets in PCa.
Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores de Somatostatina/biosíntesis , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/terapia , Receptores de Somatostatina/genéticaRESUMEN
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, underscoring the urgent need for in-depth biological research. The phenomenon of alternative RNA splicing dysregulation is a common hallmark in cancer, including PDAC, presenting new avenues for understanding and developing diagnostic and therapeutic tools. Our research focuses on EIF4A3, a core component of the Exon Junction Complex intimately linked to RNA splicing, and its role in PDAC. EIF4A3 is overexpressed in PDAC tissue and associated to clinical parameters of malignancy and poorer patient survival. Mechanistically, exploration of PDAC RNA-seq data unveiled the link of EIF4A3 to diverse malignancy processes, consistent with its association to key molecular pathways. EIF4A3 targeting in vitro decreased essential functional tumor features such as proliferation, migration, colony formation and sphere formation, while its in vivo targeting reduced tumor growth. EIF4A3 silencing in PDAC cell lines severely altered its transcriptional and spliceosomic landscapes, as shown by RNA-seq analyses, suggesting a role for EIF4A3 in maintaining RNA homeostasis. Our results indicate that EIF4A3 dysregulation in PDAC has a pleiotropic regulatory role on RNA biology, influencing key cellular functions. This paves the way to explore its potential as novel biomarker and actionable target candidate for this lethal cancer.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.
Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Factores de Empalme de ARN , Empalme del ARN , Proteínas de Unión al ARN , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalme del ARN/genética , Masculino , Femenino , Terapia Molecular Dirigida , Persona de Mediana EdadRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Biomarcadores , ARN , Neoplasias PancreáticasRESUMEN
Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.
Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/terapia , Proteínas de Unión al ARN/genética , Proliferación Celular/genética , Factores de Empalme de ARN/genética , Neoplasias Pancreáticas/patología , Antígeno Ventral Neuro-OncológicoRESUMEN
Human induced pluripotent stem cells (hiPSCs) and organoids are important for modeling human development and disease in vitro. In this study, we describe a protocol to differentiate hiPSC toward pancreatic progenitor (PP) organoids and beta-like cells. We detail the expansion and seeding of hiPSC, PP differentiation, organoid expansion, and the differentiation of PP into beta cells. Upon differentiation, organoids contained beta, delta, and alpha cells. For complete details on the use and execution of this protocol, please refer to Cujba et al. (2022).
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Humanos , OrganoidesRESUMEN
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and ß cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1ß and inhibits its function, and disrupting this interaction partially rescues HNF1ß-dependent transcription. HNF1ß overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1ß overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues ß cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1ß-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients.
Asunto(s)
Diabetes Mellitus , Factor Nuclear 1-alfa del Hepatocito/genética , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Diabetes Mellitus Tipo 2 , Humanos , PáncreasRESUMEN
Somatostatin receptor subtype 5 (SST5 ) is an emerging biomarker and actionable target in pituitary (PitNETs) and pancreatic (PanNETs) neuroendocrine tumors. Transcriptional and epigenetic regulation of SSTR5 gene expression and mRNA biogenesis is poorly understood. Recently, an overlapping natural antisense transcript, SSTR5-AS1, potentially regulating SSTR5 expression, was identified. We aimed to elucidate whether epigenetic processes contribute to the regulation of SSTR5 expression in PitNETs (somatotropinomas) and PanNETs. We analyzed the SSTR5/SSTR5-AS1 human locus in silico to identify CpG islands. SSTR5 and SSTR5-AS1 expression was assessed by quantitative real-time PCR (qPCR) in 27 somatotropinomas, 11 normal pituitaries (NPs), and 15 PanNETs/paired adjacent (control) samples. We evaluated methylation grade in four CpG islands in the SSTR5/SSTR5-AS1 genes. Results revealed that SSTR5 and SSTR5-AS1 were directly correlated in NP, somatotropinoma, and PanNET samples. Interestingly, selected CpG islands were differentially methylated in somatotropinomas compared with NPs. In PanNETs cell lines, SSTR5-AS1 silencing downregulated SSTR5 expression, altered aggressiveness features, and influenced pasireotide response. These results provide evidence that SSTR5 expression in PitNETs and PanNETs can be epigenetically regulated by the SSTR5-AS1 antisense transcript and, indirectly, by DNA methylation, which may thereby impact tumor behavior and treatment response.
Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Hipofisarias , Receptores de Somatostatina , Metilación de ADN , Epigénesis Genética , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismoRESUMEN
Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.
Asunto(s)
Redes Reguladoras de Genes , Páncreas/fisiología , Enfermedades Pancreáticas/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , Homeostasis , Humanos , Páncreas/citología , RNA-Seq , Medicina Regenerativa , Análisis de la Célula Individual , Células Madre/metabolismoRESUMEN
Hypercalcemia is a common complication in cancer patients Mainly caused by Parathyroid hormone-related protein (PTHrP) secretion and metastasis. Calcitriol secretion is a rare source of hypercalcemia in solid tumors, especially in gastrointestinal stromal tumors (GIST). We present a case report of a female patient with a 23 cm gastric GIST that expressed somatostatin-receptors and presented with severe hypercalcemia due to calcitriol secretion. Calcium control was achieved with medical treatment before the use of targeted-directed therapies. Surgery was performed and allowed complete tumor resection. Two years later, patient remains free of disease. Molecular analysis revealed the mRNA expression of 25-hydroxyvitamin D3-1-hydroxylase (1αOHase) and vitamin-D receptors in the tumor cells, confirming the calcitriol-mediated mechanism. Furthermore, the expression of the endotoxin recognition factors CD14 and TLR4 suggests an inflammatory mediated mechanism. Finally, the expression of somatostatin-receptors, especially SST2 might have been related with clinical evolution and prognosis in this patient.
Asunto(s)
Tumores del Estroma Gastrointestinal , Hipercalcemia , Calcifediol , Calcitriol/uso terapéutico , Femenino , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Humanos , Hipercalcemia/genética , Oxigenasas de Función Mixta , Receptores de Somatostatina , Vitamina D/análogos & derivadosRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. METHODS: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. RESULTS: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. CONCLUSION: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Células Madre Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pez CebraRESUMEN
BACKGROUND: Dysregulation of splicing variants (SVs) expression has recently emerged as a novel cancer hallmark. Although the generation of aberrant SVs (e.g. AR-v7/sst5TMD4/etc.) is associated to prostate-cancer (PCa) aggressiveness and/or castration-resistant PCa (CRPC) development, whether the molecular reason behind such phenomena might be linked to a dysregulation of the cellular machinery responsible for the splicing process [spliceosome-components (SCs) and splicing-factors (SFs)] has not been yet explored. METHODS: Expression levels of 43 key SCs and SFs were measured in two cohorts of PCa-samples: 1) Clinically-localized formalin-fixed paraffin-embedded PCa-samples (nâ¯=â¯84), and 2) highly-aggressive freshly-obtained PCa-samples (nâ¯=â¯42). FINDINGS: A profound dysregulation in the expression of multiple components of the splicing machinery (i.e. 7 SCs/19 SFs) were found in PCa compared to their non-tumor adjacent-regions. Notably, overexpression of SNRNP200, SRSF3 and SRRM1 (mRNA and/or protein) were associated with relevant clinical (e.g. Gleason score, T-Stage, metastasis, biochemical recurrence, etc.) and molecular (e.g. AR-v7 expression) parameters of aggressiveness in PCa-samples. Functional (cell-proliferation/migration) and mechanistic [gene-expression (qPCR) and protein-levels (western-blot)] assays were performed in normal prostate cells (PNT2) and PCa-cells (LNCaP/22Rv1/PC-3/DU145 cell-lines) in response to SNRNP200, SRSF3 and/or SRRM1 silencing (using specific siRNAs) revealed an overall decrease in proliferation/migration-rate in PCa-cells through the modulation of key oncogenic SVs expression levels (e.g. AR-v7/PKM2/XBP1s) and alteration of oncogenic signaling pathways (e.g. p-AKT/p-JNK). INTERPRETATION: These results demonstrate that the spliceosome is drastically altered in PCa wherein SNRNP200, SRSF3 and SRRM1 could represent attractive novel diagnostic/prognostic and therapeutic targets for PCa and CRPC.
Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Empalme del ARN/genética , Anciano , Benzamidas , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Empalmosomas/metabolismoRESUMEN
Context: Biguanides and statins exert beneficial effects on various cancer types. Their precise effects and underlying molecular mechanisms are poorly understood. Materials and Methods: We analyzed the relationship between metabolic syndrome and histological, epidemiological, and prognosis variables in two cohorts of patients with neuroendocrine tumors (NETs): those with lung carcinoids (LCs; n = 81) and those with gastroenteropancreatic NET (GEP-NET; n = 100). Biguanide and statin antitumor effects were investigated by evaluating proliferation, migration, secretion, gene expression, and involved molecular pathways in BON1/QGP1 cell cultures. Results: Pleura invasion was higher (LCs group; P < 0.05) and tumor diameter tended to be increased (GEP-NET group) in patients with type 2 diabetes (T2DM) than in those without. Somatostatin and ghrelin systems mRNA levels differed in tumor tissue of patients with T2DM taking metformin or not. Biguanides decreased proliferation rate in BON1/QGP1 cells; the effects of statins on proliferation rate depended on the statin and cell types, and time. Specifically, only simvastatin and atorvastatin decreased proliferation in BON1 cells, whereas all statins decreased proliferation rate in QGP1 cells. Metformin and simvastatin decreased migration capacity in BON1 cells; biguanides decreased serotonin secretion in BON1 cells. Phenformin increased apoptosis in BON1/QGP1 cells; simvastatin increased apoptosis in QGP1 cells. These antitumor effects likely involved altered expression of key genes related to cancer aggressiveness. Conclusion: A clear inhibitory effect of biguanides and statins was seen on NET-cell aggressiveness. Our results invite additional exploration of the potential therapeutic role of these drugs in treatment of patients with NETs.