Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Neuropathol ; 135(4): 581-599, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29350274

RESUMEN

The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood-brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al GTP/metabolismo , Linfocitos T/metabolismo , Adulto , Anciano , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Proteínas de Unión al GTP/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia/fisiopatología , Trasplante de Neoplasias , Proteoma , ARN Mensajero/metabolismo
2.
Mod Pathol ; 30(1): 15-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612322

RESUMEN

Female BRCA1/2 mutation carriers affected with breast and/or ovarian cancer may develop new tumor deposits over time. It is of utmost importance to know the clonal relationships between multiple tumor localizations, enabling differentiation between multiple primaries or metastatic disease with consequences for therapy and prognosis. We evaluated the value of targeted next generation sequencing in the diagnostic workup of BRCA1/2 mutation carriers with ≥2 tumor localizations and uncertain tumor origins. Forty-two female BRCA1/2 mutation carriers with ≥2 tumor localizations were selected. Patients with inconclusive tumor origin after histopathological revision were 'cases'; patients with certain tumor origin of ≥3 tumors served as 'controls'. Tumors of cases and controls were analyzed by targeted next generation sequencing using a panel including CDKN2A, PTEN and TP53, hotspot mutation sites for 27 different genes and 143 single nucleotide polymorphisms for detection of loss of heterozygosity. Based on prevalence of identical or different mutations and/or loss of heterozygosity patterns, tumors were classified as 'multiple primaries' or 'one entity'. Conventional histopathology yielded a conclusive result in 38/42 (90%) of patients. Four cases and 10 controls were analyzed by next generation sequencing. In 44 tumor samples, 48 mutations were found; 39 (81%) concerned TP53 mutations. In all 4 cases, the intra-patient clonal relationships between the tumor localizations could be unequivocally identified by molecular analysis. In all controls, molecular outcomes matched the conventional histopathological results. In most BRCA1/2 mutation carriers with multiple tumors routine pathology work-up is sufficient to determine tumor origins and relatedness. In case of inconclusive conventional pathology results, molecular analyses using next generation sequencing can reliably determine clonal relationships between tumors, enabling optimal treatment of individual patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Genes BRCA1 , Genes BRCA2 , Neoplasias Primarias Múltiples/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Mutación , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
3.
Cancers (Basel) ; 13(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203581

RESUMEN

BACKGROUND: Brain metastasis is considered one of the major causes of mortality in breast cancer patients. To invade the brain, tumor cells need to pass the blood-brain barrier by mechanisms that are partially understood. In primary ER-negative breast cancers that developed brain metastases, we found that some of the differentially expressed genes play roles in the T cell response. The present study aimed to identify genes involved in the formation of brain metastasis independently from the T cell response. METHOD: Previously profiled primary breast cancer samples were reanalyzed. Genes that were found to be differentially expressed were confirmed by RT-PCR and by immunohistochemistry using an independent cohort of samples. RESULTS: BOC, SPOCK2, and GJD3 were overexpressed in the primary breast tumors that developed brain metastasis. BOC expression was successfully validated at the protein level. SPOCK2 was validated at both mRNA and protein levels. SPOCK2 and GJD3 mRNA overexpression were also found to be associated with cerebral metastasis in an external online database consisting of 204 primary breast cancers. CONCLUSION: The overexpression of BOC, SPOCK2, and GJD3 is associated with the invasion of breast cancer into the brain. Further studies to determine their specific function and potential value as brain metastasis biomarkers are required.

4.
Neuro Oncol ; 20(11): 1439-1449, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29566179

RESUMEN

The development of brain metastasis (BM) of breast cancer is usually a late event with deleterious effect on the prognosis. Treatment options for intracerebral seeding of breast cancer are limited and, so far, nonspecific. Molecular detailing of subsequent events of penetration, seeding, and outgrowth in brain is highly relevant for developing therapeutic strategies to treat, or prevent, BM.We scrutinize recent literature for molecules and pathways that are operative in the formation of breast cancer BM. We also summarize current data on therapeutic efforts to specifically address BM of breast cancer. Data on molecular pathways underlying the formation of BM of breast cancer are sketchy and to some extent inconsistent. The molecular makeup of BM differs from that of the primary tumors, as well as from metastases at other sites. Current efforts to treat breast cancer BM are limited, and drugs used have proven effects on the primary tumors but lack specificity for the intracerebral tumors.More basic research is necessary to better characterize BM of breast cancer. Apart from the identification of drug targets defined by the intracerebral tumors, also targets in the molecular pathways involved in passing the blood-brain barrier and intracerebral tumor cell growth should be revealed.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Terapia Molecular Dirigida , Proteínas de Neoplasias/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Pronóstico
5.
Front Oncol ; 8: 159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868480

RESUMEN

Brain metastases are the most common tumors of the central nervous system (CNS). Incidence rates vary according to primary tumor origin, whereas the majority of the cerebral metastases arise from primary tumors in the lung (40-50%). Brain metastases from lung cancer can occur concurrently or within months after lung cancer diagnosis. Survival rates after lung cancer brain metastasis diagnosis remain poor, to an utmost of 10 months. Therefore, prevention of brain metastasis is a critical concern in order to improve survival among cancer patients. Although several studies have been made in order to disclose the genetic and molecular mechanisms associated with CNS metastasis, the precise mechanisms that govern the CNS metastasis from lung cancer are yet to be clarified. The ability to forecast, which patients have a higher risk of brain metastasis occurrence, would aid cancer management approaches to diminish or prevent the development of brain metastasis and improve the clinical outcome for such patients. In this work, we revise genetic and molecular targets suitable for prediction of lung cancer CNS disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA