Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34793711

RESUMEN

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Asunto(s)
Senescencia Celular , Inversión Cromosómica , Cromosomas/ultraestructura , Transición Epitelial-Mesenquimal , Neoplasias/genética , Oncogenes , Recombinación Genética , Animales , Bronquios/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Transformación Celular Neoplásica , Ritmo Circadiano , Biología Computacional , Células Epiteliales/metabolismo , Citometría de Flujo , Genómica , Humanos , Cariotipificación , Ratones , Ratones SCID , Neoplasias/metabolismo , Fenotipo , Unión Proteica , Dominios Proteicos , Fenotipo Secretor Asociado a la Senescencia
2.
Trends Biochem Sci ; 47(4): 328-341, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063340

RESUMEN

The rRNA genes [ribosomal DNA (rDNA)] are organized in a prominent nuclear compartment, the nucleolus. It is now well established that the nucleolus functions beyond ribosome biosynthesis, regulating several physiological cellular responses. The nucleoli constitute dynamic genomic/nuclear hubs and demonstrate unique inherent characteristics, rendering them ideal to sense, signal, and respond to various intrinsic and environmental insults. Here, we discuss emerging findings supporting direct links between rDNA/nucleolar instability and cellular senescence/organismal aging from yeast to mammals. Moreover, we highlight evidence that nucleolar functionality and rDNA architecture impact on meiotic/transgenerational rejuvenation, thus revealing causality underlying connections between rDNA/nucleolar instability and aging.


Asunto(s)
Envejecimiento , Nucléolo Celular , Envejecimiento/genética , Animales , Nucléolo Celular/genética , Senescencia Celular , ADN Ribosómico/genética , Mamíferos , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética
3.
EMBO Rep ; 23(8): e54483, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35758159

RESUMEN

DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Fosforilación , Transducción de Señal/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
4.
Mol Cell ; 63(1): 156-66, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27292796

RESUMEN

Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-ß is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-ß, RASSF1A is recruited to TGF-ß receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-ß-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-ß targets genes. Moreover, RASSF1A limits TGF-ß induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfoproteínas/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Transporte Activo de Núcleo Celular , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Metilación de ADN , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Interferencia de ARN , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción , Transcripción Genética , Transfección , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAP
5.
EMBO J ; 38(16): e101168, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31414556

RESUMEN

Nuclear actin participates in many essential cellular processes including gene transcription, chromatin remodelling and mRNA processing. Actin shuttles into and out the nucleus through the action of dedicated transport receptors importin-9 and exportin-6, but how this transport is regulated remains unclear. Here, we show that RASSF1A is a novel regulator of actin nucleocytoplasmic trafficking and is required for the active maintenance of nuclear actin levels through supporting binding of exportin-6 (XPO6) to RAN GTPase. RASSF1A (Ras association domain family 1 isoform A) is a tumour suppressor gene frequently silenced by promoter hypermethylation in all major solid cancers. Specifically, we demonstrate that endogenous RASSF1A localises to the nuclear envelope (NE) and is required for nucleocytoplasmic actin transport and the concomitant regulation of myocardin-related transcription factor A (MRTF-A), a co-activator of the transcription factor serum response factor (SRF). The RASSF1A/RAN/XPO6/nuclear actin pathway is aberrant in cancer cells where RASSF1A expression is lost and correlates with reduced MRTF-A/SRF activity leading to cell adhesion defects. Taken together, we have identified a previously unknown mechanism by which the nuclear actin pool is regulated and uncovered a previously unknown link of RASSF1A and MRTF-A/SRF in tumour suppression.


Asunto(s)
Actinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias Hepáticas/genética , Membrana Nuclear/metabolismo , Factor de Respuesta Sérica/genética , Proteínas Supresoras de Tumor/metabolismo , Transporte Biológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Metilación de ADN , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Carioferinas/metabolismo , Neoplasias Hepáticas/metabolismo , Pronóstico , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/genética
6.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29789391

RESUMEN

The heavily transcribed rDNA repeats that give rise to the ribosomal RNA are clustered in a unique chromatin structure, the nucleolus. Due to its highly repetitive nature and transcriptional activity, the nucleolus is considered a hotspot of genomic instability. Breaks in rDNA induce a transient transcriptional shut down to conserve energy and promote rDNA repair; however, how nucleolar chromatin is modified and impacts on rDNA repair is unknown. Here, we uncover that phosphorylation of serine 14 on histone H2B marks transcriptionally inactive nucleolar chromatin in response to DNA damage. We identified that the MST2 kinase localises at the nucleoli and targets phosphorylation of H2BS14p in an ATM-dependent manner. We show that establishment of H2BS14p is necessary for damage-induced rDNA transcriptional shut down and maintenance of genomic integrity. Ablation of MST2 kinase, or upstream activators, results in defective establishment of nucleolar H2BS14p, perturbed DNA damage repair, sensitisation to rDNA damage and increased cell lethality. We highlight the impact of chromatin regulation in the rDNA damage response and targeting of the nucleolus as an emerging cancer therapeutic approach.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Ribosómico/biosíntesis , Histonas/metabolismo , Región Organizadora del Nucléolo/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , ADN Ribosómico/genética , Humanos , Fosforilación , Serina-Treonina Quinasa 3 , Transcripción Genética/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Chromosoma ; 127(2): 151-174, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29243212

RESUMEN

To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Geminina/genética , Genoma , Mitosis , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/ultraestructura , Cilios/ultraestructura , Replicación del ADN , Enanismo/genética , Enanismo/metabolismo , Enanismo/patología , Factor de Transcripción E2F4/genética , Factor de Transcripción E2F4/metabolismo , Factor de Transcripción E2F5/genética , Factor de Transcripción E2F5/metabolismo , Geminina/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Transducción de Señal , Factores de Transcripción
8.
J Pathol ; 246(1): 12-40, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29756349

RESUMEN

During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Daño del ADN , Neoplasias/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Proteostasis , Estrés Fisiológico , Animales , Antineoplásicos/uso terapéutico , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenotipo , Proteoma/genética , Transducción de Señal
9.
BMC Genomics ; 19(1): 37, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321003

RESUMEN

BACKGROUND: Senescence is a fundamental biological process implicated in various pathologies, including cancer. Regarding carcinogenesis, senescence signifies, at least in its initial phases, an anti-tumor response that needs to be circumvented for cancer to progress. Micro-RNAs, a subclass of regulatory, non-coding RNAs, participate in senescence regulation. At the subcellular level micro-RNAs, similar to proteins, have been shown to traffic between organelles influencing cellular behavior. The differential function of micro-RNAs relative to their subcellular localization and their role in senescence biology raises concurrent in situ analysis of coding and non-coding gene products in senescent cells as a necessity. However, technical challenges have rendered in situ co-detection unfeasible until now. METHODS: In the present report we describe a methodology that bypasses these technical limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGorTM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene-induced senescence that we generated for the purposes of the study. For the characterization of this novel system, we applied a wide range of cellular and molecular techniques, as well as high-throughput analysis of the transcriptome and micro-RNAs. RESULTS: This experimental setting has three advantages that are presented and discussed: i) it covers a "gap" in the molecular carcinogenesis field, as almost all corresponding in vitro models are fibroblast-based, even though the majority of neoplasms have epithelial origin, ii) it recapitulates the precancerous and cancerous phases of epithelial tumorigenesis within a short time frame under the light of natural selection and iii) it uses as an oncogenic signal, the replication licensing factor CDC6, implicated in both DNA replication and transcription when over-expressed, a characteristic that can be exploited to monitor RNA dynamics. CONCLUSIONS: Consequently, we demonstrate that our model is optimal for studying the molecular basis of epithelial carcinogenesis shedding light on the tumor-initiating events. The latter may reveal novel molecular targets with clinical benefit. Besides, since this method can be incorporated in a wide range of low, medium or high-throughput image-based approaches, we expect it to be broadly applicable.


Asunto(s)
Senescencia Celular/genética , Neoplasias Glandulares y Epiteliales/genética , Oncogenes , Carcinogénesis , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Genoma , Humanos , MicroARNs/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas/metabolismo
10.
Development ; 142(21): 3661-74, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26395491

RESUMEN

Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Epéndimo/citología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Epéndimo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
11.
EMBO Rep ; 17(3): 400-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26882546

RESUMEN

Multiciliated cells are terminally differentiated, post-mitotic cells that form hundreds of motile cilia on their apical surface. Defects in multiciliated cells lead to disease, including mucociliary clearance disorders that result from ciliated cell disfunction in airways. The pathway controlling multiciliogenesis, however, remains poorly characterized. We showed that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis. GemC1 is specifically expressed in ciliated epithelia. Ectopic expression of GemC1 is sufficient to induce early steps of multiciliogenesis in airway epithelial cells ex vivo, upregulating McIdas and FoxJ1, key transcriptional regulators of multiciliogenesis. GemC1 directly transactivates the McIdas and FoxJ1 upstream regulatory sequences, and its activity is enhanced by E2F5 and inhibited by Geminin. GemC1-knockout mice are born with airway epithelia devoid of multiciliated cells. Our results identify GemC1 as an essential regulator of ciliogenesis in the airway epithelium and a candidate gene for mucociliary disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cilios/metabolismo , Factor de Transcripción E2F5/genética , Factor de Transcripción E2F5/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Geminina/genética , Geminina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mucosa Respiratoria/citología , Regulación hacia Arriba
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2278-86, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26527144

RESUMEN

GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Geminina/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Geminina/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Temperatura
14.
J Biol Chem ; 288(44): 31624-34, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24064211

RESUMEN

Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Geminina/química , Geminina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Multimerización de Proteína/fisiología , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Geminina/genética , Humanos , Proteínas Nucleares/genética , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Factores de Transcripción , Xenopus laevis
15.
Nat Commun ; 9(1): 424, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382819

RESUMEN

Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the ß-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and ß-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/ß-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Madre Embrionarias/citología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tumoral p73/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Hippo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteínas Supresoras de Tumor/genética , Proteínas Wnt/metabolismo , Proteínas Señalizadoras YAP , beta Catenina/metabolismo
16.
Cell Cycle ; 14(11): 1624-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25927241

RESUMEN

While it has been widely established that defective fork restart after exposure to stress results in increased genomic instability, the importance of fork protection during stalling for safeguarding genomic integrity has recently been fully appreciated. BRCA2, Breast tumor suppressor, has dual functionality promoting not only DNA repair but also preventing DNA lesions at stalled forks. In response to replication stress, BRCA2 recruits RAD51 onto nascent DNA at stalled forks, protecting nascent DNA from nucleolitic cleavage. Phosphorylation of the BRCA2 C-terminal RAD51 binding site by CDK2 promotes RAD51 filament disassembly, leading to nucleolitic cleavage of newly synthesized DNA and compromised fork integrity. Recently we uncovered how the core Hippo pathway components RASSF1A, MST2 and LATS1 regulate CDK2 activity towards BRCA2, in response to fork stalling. In complex with LATS1, CDK2 exhibits reduced kinase activity which results in low levels of pBRCA2-S3291 and stable RAD51 filaments protecting nascent DNA from MRE11 cleavage. In the absence of the RASSF1A/MST2/LATS1/CDK2 pathway increased resection of newly synthesized DNA leads to chromosomal instability and malignant transformation. This function of RASSF1A in stalled replication fork protection adds to the role of RASSF1A as a tumor suppressor and builds up evidence for RASSF1A status and its prognostic and predictive value in cancer.


Asunto(s)
Proteína BRCA2/metabolismo , Replicación del ADN/fisiología , Inestabilidad Genómica/fisiología , Modelos Biológicos , Proteínas Supresoras de Tumor/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3
17.
Nat Cell Biol ; 16(10): 962-71, 1-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25218637

RESUMEN

Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and 'BRCA-ness' in lung cancers.


Asunto(s)
Proteína BRCA2/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA2/genética , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Aberraciones Cromosómicas , Ensayo Cometa , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Ratones Noqueados , Microscopía Confocal , Modelos Genéticos , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA