Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 928092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247589

RESUMEN

As the main component of snowmelt agents, NaCl is widely used in northern winters and significantly impacts the expected growth of garden plants in north China. Salix matsudana is also faced with salt stress caused by snowmelt, which seriously affects its development as the main tree species in the northern landscape. However, how exogenous calcium alleviates salt stress in Salix matsudana is not yet clear. In this study, the indicators of growth indices, photosynthetic characteristics and stress resistance were measured by hydroponic assays in combination with three NaCl conditions (0, 50 and 200 mmol·L-1) and five calcium concentrations (0, 2.5, 5, 10 and 20 mmol·L-1). The study's results indicated that the application of exogenous calcium remarkably promoted the growth of Salix matsudana seedlings under NaCl stress. When the exogenous calcium concentration was 10 mmol·L-1, the plant height and basal diameter of Salix matsudana seedlings increased significantly, and the biomass of all parts reached the maximum (P< 0.05). Exogenous calcium can substantially improve the photosynthesis of Salix matsudana seedlings under salt stress. The photosynthetic parameters, photosynthetic pigment content and photosynthetic product synthesis of Salix matsudana seedlings were significantly increased at an exogenous calcium concentration of 10 mmol·L-1, and the photosynthetic level of Salix matsudana seedlings reached the highest value. The chlorophyll fluorescence parameters (F v /F m, F v /F 0) of Salix matsudana seedlings were significantly decreased under different concentrations of NaCl stress. The maximum photochemical efficiency (F v /F m) and potential photochemical efficiency (F v /F 0) of Salix matsudana seedlings peaked when the exogenous calcium concentration was 10 mmol·L-1, which was significantly higher than that of the other treatments (P< 0.05). The water use efficiency of Salix matsudana was affected considerably by NaCl stress. The WUE and iWUE peak values of Salix matsudana were significantly higher than those of other calcium concentrations at 10 mmol·L-1 (P< 0.05). Exogenous calcium can increase the activities of CAT, SOD and POD enzymes in Salix matsudana seedlings under different NaCl concentrations. Under NaCl stress, adding exogenous calcium promoted the survival rate and growth of Salix matsudana seedlings. In conclusion, the optimum exogenous calcium concentration for Salix matsudana seedlings was 10 mmol·L-1. High or low concentrations of exogenous calcium did not achieve the best results in alleviating salt stress in Salix matsudana.

2.
Sci Total Environ ; 572: 1101-1110, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524720

RESUMEN

Long-term use of artificial fertiliser has a significant impact on soil organic carbon (SOC). We used physical-chemical fractionation methods to assess the impact of long-term (26years) fertilisation in a maize cropping system developed on Brown Earth in Northeast China. Plot treatments consisted of control (CK); nitrogen (N) fertiliser (N2); low-level organic manure combined with inorganic N and phosphorus (P) fertiliser (M1N1P1); medium-level organic manure combined with inorganic N fertiliser (M2N2); and high-level organic manure combined with inorganic N and P fertiliser (M4N2P1). Our objectives were to (1) determine the contents of and variations in the SOC fractions; (2) explore the relationship between total SOC and its fractions. In treatments involving organic manure (M1N1P1, M2N2, and M4N2P1), total SOC and physically protected microaggregate (µagg) and µagg occluded particulate organic carbon (iPOC) contents increased by 9.9-58.9%, 1.3-34.7%, 29.5-127.9% relative to control, respectively. But there no significant differences (P>0.05) were detected for the chemically, physically-chemically, and physically-biochemically protected fractions among the M1N1P1, M2N2, and M4N2P1 treatments. Regression analysis revealed that there was a linear positive correlation between SOC and the unprotected coarse particulate organic carbon (cPOC), physically protected µagg, and iPOC fractions (P<0.05). However, physically-chemically, and physically-biochemically protected fractions responded negatively to SOC content. The highest rate of C accumulation among the SOC fractions occurred in the cPOC fraction, which accounted for as much as 32% of C accumulation as total SOC increased, suggesting that cPOC may be the most sensitive fraction to fertiliser application. We found that treatments had no effect on C levels in H-µsilt and NH-µsilt, indicating that the microaggregated silt C-fractions may have reached a steady state in terms of C saturation in the Brown Earth of Northeast China.

3.
PLoS One ; 10(3): e0120825, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774529

RESUMEN

Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.


Asunto(s)
Ciclo del Carbono , Carbono/análisis , Suelo/química , Zea mays/química , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA