Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
2.
Mol Ecol ; 32(1): 229-243, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779067

RESUMEN

Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Micobioma/genética , Sequías , Raíces de Plantas/microbiología , Suelo/química , Plantas/microbiología , Microbiología del Suelo , Hongos/genética
3.
J Exp Bot ; 74(6): 2127-2145, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36640126

RESUMEN

Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.


Asunto(s)
Carbono , Pradera , Poaceae , Sequías , Biomasa , Almidón , Ecosistema
4.
Plant Cell Environ ; 45(8): 2271-2291, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35419849

RESUMEN

Carbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C3 pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls). Leaf, root and whole-plant carbon fluxes were measured and linked to growth before and after clipping. Both drought and warming reduced gross primary production and plant biomass. Drought reduced net leaf photosynthesis but increased the leaf respiratory fraction of assimilated carbon. Warming increased root respiration but did not affect either net leaf photosynthesis or leaf respiration. There was no evidence of thermal acclimation. Moreover, root respiratory carbon loss was amplified in the combined drought and warming treatment and, in addition to a negative carbon balance aboveground, explained an enhanced reduction in plant biomass. Plant regrowth following clipping was strongly suppressed by drought, reflecting increased tiller mortality and exacerbated respiratory carbon loss. These findings emphasize the importance of considering carbon allocation patterns in response to grazing or clipping and interactions with climatic factors for sustainable pasture production in a future climate.


Asunto(s)
Sequías , Poaceae , Biomasa , Carbono , Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Hojas de la Planta/fisiología , Plantas
5.
Glob Chang Biol ; 28(22): 6741-6751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093790

RESUMEN

Climate change, disturbance, and plant invasion threaten grassland ecosystems, but their combined and interactive effects are poorly understood. Here, we examine how the combination of disturbance and plant invasion influences the sensitivity of mixed-grass prairie to elevated carbon dioxide (eCO2 ) and warming. We established subplots of intact prairie and disturbed/invaded prairie within a free-air CO2 enrichment (to 600 ppmv) by infrared warming (+1.5°C day, 3°C night) experiment and followed plant and soil responses for 5 years. Elevated CO2 initially led to moderate increases in biomass and plant diversity in both intact and disturbed/invaded prairie, but these effects shifted due to strong eCO2 responses of the invasive forb Centaurea diffusa. In the final 3 years, biomass responses to eCO2 in disturbed/invaded prairie were 10 times as large as those in intact prairie (+186% vs. +18%), resulting in reduced rather than increased plant diversity (-17% vs. +10%). At the same time, warming interacted with disturbance/invasion and year, reducing the rate of topsoil carbon recovery following disturbance. The strength of these interactions demonstrates the need to incorporate disturbance into predictions of climate change effects. In contrast to expectations from studies in intact ecosystems, eCO2 may threaten plant diversity in ecosystems subject to soil disturbance and invasion.


Asunto(s)
Pradera , Suelo , Dióxido de Carbono , Ecosistema , Poaceae
6.
Glob Chang Biol ; 28(20): 5991-6001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751572

RESUMEN

The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2 (+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2 , warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre-dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2 and/or warming. Effects of elevated CO2 were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2 ; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2 , which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2 were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near-term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2 on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).


Asunto(s)
Dióxido de Carbono , Agua , Carbono , Sequías , Ecosistema , Pradera , Fenotipo , Hojas de la Planta/fisiología , Suelo , Agua/fisiología
7.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315565

RESUMEN

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Asunto(s)
Dióxido de Carbono , Ecosistema , Australia , Ciclo del Carbono , Cambio Climático
8.
Glob Chang Biol ; 27(19): 4727-4744, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34165839

RESUMEN

Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.


Asunto(s)
Ciclo del Carbono , Ecosistema , Australia , Bosques , Estaciones del Año , Temperatura
9.
Glob Chang Biol ; 26(3): 1873-1885, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518470

RESUMEN

Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16' to 51°37'N) and longitudes (81°01' to 129°28'E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10-MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10-MAT and soil C quality, challenging the current C quality-temperature hypothesis. Using a single, fixed Q10-MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate-related biogeographic variation in soil C responses to temperature needs to be included in next-generation C cycle models to improve predictions of C-climate feedbacks.


Asunto(s)
Ecosistema , Suelo , Carbono , China , Bosques , Temperatura
10.
Am J Bot ; 107(9): 1238-1252, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931042

RESUMEN

PREMISE: The impact of elevated CO2 concentration ([CO2 ]) and climate warming on plant productivity in dryland ecosystems is influenced strongly by soil moisture availability. We predicted that the influence of warming on the stimulation of photosynthesis by elevated [CO2 ] in prairie plants would operate primarily through direct and indirect effects on soil water. METHODS: We measured light-saturated photosynthesis (Anet ), stomatal conductance (gs ), maximum Rubisco carboxylation rate (Vcmax ), maximum electron transport capacity (Jmax ) and related variables in four C3 plant species in the Prairie Heating and CO2 Enrichment (PHACE) experiment in southeastern Wyoming. Measurements were conducted over two growing seasons that differed in the amount of precipitation and soil moisture content. RESULTS: Anet in the C3 subshrub Artemisia frigida and the C3 forb Sphaeralcea coccinea was stimulated by elevated [CO2 ] under ambient and warmed temperature treatments. Warming by itself reduced Anet in all species during the dry year, but stimulated photosynthesis in S. coccinea in the wet year. In contrast, Anet in the C3 grass Pascopyrum smithii was not stimulated by elevated [CO2 ] or warming under wet or dry conditions. Photosynthetic downregulation under elevated [CO2 ] in this species countered the potential stimulatory effect under improved water relations. Warming also reduced the magnitude of CO2 -induced down-regulation in this grass, possibly by sustaining high levels of carbon utilization. CONCLUSIONS: Direct and indirect effects of elevated [CO2 ] and warming on soil water was an overriding factor influencing patterns of Anet in this semi-arid temperate grassland, emphasizing the important role of water relations in driving grassland responses to global change.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Clima , Cambio Climático , Ecosistema , Pradera , Suelo
11.
New Phytol ; 222(3): 1313-1324, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840319

RESUMEN

Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of CO2 . The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE). We quantified respiratory partitioning of gross primary production (GPP) and CUE of field-grown trees in a long-term warming experiment (+3°C). We delivered a 13 C-CO2 pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns. We documented homeostatic respiratory acclimation of foliar and whole-crown respiration rates; the trees adjusted to experimental warming such that leaf-level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the 13 C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained. Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.


Asunto(s)
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Calentamiento Global , Árboles/metabolismo , Respiración de la Célula , Marcaje Isotópico , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Suelo/química
12.
Plant Cell Environ ; 42(12): 3253-3263, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31335973

RESUMEN

Trees allocate C from sources to sinks by way of a series of processes involving carbohydrate transport and utilization. Yet these dynamics are not well characterized in trees, and it is unclear how these dynamics will respond to a warmer world. Here, we conducted a warming and pulse-chase experiment on Eucalyptus parramattensis growing in a whole-tree chamber system to test whether warming impacts carbon allocation by increasing the speed of carbohydrate dynamics. We pulse-labelled large (6-m tall) trees with 13 C-CO2 to follow recently fixed C through different organs by using compound-specific isotope analysis of sugars. We then compared concentrations and mean residence times of individual sugars between ambient and warmed (+3°C) treatments. Trees dynamically allocated 13 C-labelled sugars throughout the aboveground-belowground continuum. We did not, however, find a significant treatment effect on C dynamics, as sugar concentrations and mean residence times were not altered by warming. From the canopy to the root system, 13 C enrichment of sugars decreased, and mean residence times increased, reflecting dilution and mixing of recent photoassimilates with older reserves along the transport pathway. Our results suggest that a locally endemic eucalypt was seemingly able to adjust its physiology to warming representative of future temperature predictions for Australia.


Asunto(s)
Isótopos de Carbono/metabolismo , Cambio Climático , Eucalyptus/fisiología , Azúcares/metabolismo , Árboles/fisiología , Carbono/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Factores de Tiempo
14.
Ecol Lett ; 21(11): 1639-1648, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160010

RESUMEN

Accurate predictions of soil C feedbacks to climate change depend on an improved understanding of responses of soil C pools and C use by soil microbial groups. We assessed soil and microbial C in a 7-year manipulation of CO2 and warming in a semi-arid grassland. Continuous field isotopic labelling under elevated CO2 further allowed us to study the dynamics of the existing C (Old C) in soil and microbes as affected by warming. Warming reduced soil C under elevated CO2 but had no impact under ambient CO2 . Loss of soil C under warming and elevated CO2 was attributed to increased proportional loss of Old C. Warming also reduced the proportion of Old C in microbes, specifically the bacteria, but not the fungi. These findings highlight that warming impacts are C pool and microbial taxa dependent and demonstrate interactive effects of warming and atmospheric CO2 on soil C.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Bacterias/crecimiento & desarrollo , Dióxido de Carbono , Cambio Climático , Ecosistema
15.
Ecol Lett ; 21(5): 674-682, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29508508

RESUMEN

Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Agua , Biomasa , Pradera , Poaceae , Suelo
16.
Glob Chang Biol ; 23(10): 4420-4429, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28480591

RESUMEN

Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Suelo/química , Carbono , Ecosistema , Plantas
17.
Glob Chang Biol ; 23(8): 3092-3106, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27992952

RESUMEN

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.


Asunto(s)
Ciclo del Carbono , Ecosistema , Pradera , Dióxido de Carbono , Clima , Wyoming
18.
Glob Chang Biol ; 23(9): 3623-3645, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28145053

RESUMEN

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2  yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.


Asunto(s)
Pradera , Calefacción , Poaceae/crecimiento & desarrollo , Dióxido de Carbono , Suelo , Wyoming
19.
Nature ; 476(7359): 202-5, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21814202

RESUMEN

Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.


Asunto(s)
Dióxido de Carbono/farmacología , Desecación , Ecosistema , Calentamiento Global , Fotosíntesis/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Atmósfera/química , Biomasa , Dióxido de Carbono/metabolismo , Clima Desértico , Fotosíntesis/fisiología , Estomas de Plantas/metabolismo , Transpiración de Plantas , Poaceae/metabolismo , Estaciones del Año , Suelo/química , Volatilización , Agua/análisis , Wyoming
20.
Proc Natl Acad Sci U S A ; 111(43): 15456-61, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313034

RESUMEN

Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, we used a large field experiment to test the effects of elevated CO2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community composition and biomass production. We show that the independent effects of CO2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Thus, our results have implications for how we manage native grasslands in the face of changing climate.


Asunto(s)
Dióxido de Carbono/farmacología , Ecosistema , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Análisis de Varianza , Biomasa , Cambio Climático , Lluvia , Especificidad de la Especie , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA