Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 132(1): 13-66, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27815801

RESUMEN

Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.


Asunto(s)
Clorofila/química , Clorofila/metabolismo , Fluorescencia , Técnicas Biosensibles , Clorofila A , Productos Agrícolas , Complejo de Citocromo b6f/metabolismo , Citocromos b6/metabolismo , Transporte de Electrón , Herbicidas/toxicidad , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico , Temperatura , Árboles
2.
Photosynth Res ; 122(2): 121-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25119687

RESUMEN

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Asunto(s)
Clorofila/química , Fluorescencia , Fotosíntesis/fisiología , Clorofila/metabolismo , Clorofila A , Luz
3.
Front Plant Sci ; 15: 1357611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562562

RESUMEN

This study investigates the impact of sweet potato plant sanitation on the yield and external and internal quality root storage exploring the nutritional content affected by various cooking methods (raw, boiled, and oven-cooked). The presence of viruses, and concretely of the sweet potato leaf curl virus (SPLCV), in sweet potato propagation material is shown to significantly reduce yield and modify storage root quality. Notably, the research reveals a substantial improvement in crop yield and external quality, reinforcing the efficacy of plant sanitation methods, specifically apical meristem culture, in preserving the overall productivity of sweet potato crops. Furthermore, the investigation identifies a noteworthy decrease in starch content, suggesting a dynamic interaction between plant sanitation and starch metabolism in response to viral diseases. The study also delves into the alteration of mineral absorption patterns, shedding light on how plant sanitation influences the uptake of essential minerals in sweet potato storage roots. While the health status of the plants only slightly affected magnesium (Mg) and manganese (Mn) accumulation, indicating a potential resilience of mineral balance under virus-infected conditions. Moreover, the research identifies significant modifications in antioxidant levels, emphasizing the role of plant sanitation in enhancing the nutritional quality of sweet potatoes. Heat-treated storage roots, subjected to various cooking methods such as boiling and oven-cooking, exhibit notable differences in internal quality parameters. These differences include increased concentrations of total soluble solids (SS) and heightened levels of antioxidant compounds, particularly phenolic and flavonoid compounds. The observed increase in antioxidant capacity underscores the potential health-promoting benefits associated with plant sanitation practices. Overall, the study underscores the critical importance of plant sanitation in enhancing sweet potato production sustainability, contributing to food security, and supporting local agricultural economies. The results emphasize the need for further research to optimize plant sanitation methods and promote their widespread adoption globally, providing valuable insights into the complex relationships in food quality.

5.
Plant Physiol Biochem ; 148: 207-219, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31972389

RESUMEN

In pepper crops, rootstocks that tolerate salt stress are not used because available commercial rootstocks offer limited profits. In this context, we obtained the hybrid NIBER®, a new salinity-tolerant rootstock that has been tested under real salinity field conditions for 3 years with 32%-80% higher yields than ungrafted pepper plants. This study aimed to set up the initial mechanisms involved in the salinity tolerance of grafted pepper plants using NIBER® as a rootstock to study root-shoot behavior, a basic requirement to develop efficient rootstocks. Gas exchange, Na+/K+, antioxidant capacity, nitrate reductase activity, ABA, proline, H2O2, phenols, MDA concentration and biomass were measured in ungrafted plants of cultivar Adige (A), self-grafted (A/A), grafted onto NIBER® (A/N) and reciprocal grafted plants (N/A), all exposed to 0 mM and 70 mM NaCl over a 10-day period. Salinity significantly and quickly decreased photosynthesis, stomatal conductance and nitrate reductase activity, but to lower extent in A/N plants compared to A, A/A and N/A. A/N plants showed decreases in the Na+/K+ ratio, ABA content and lipid peroxidation activity. This oxidative damage alleviation in A/N was probably due to an enhanced H2O2 level that activates antioxidant capacity to cope salinity stress, and acts as a signal molecule rather than a damaging one by contributing a major increase in phenols and, to a lesser extent, in proline concentration. These traits led to a minor impact on biomass in A/N plants under salinity conditions. Only the plants with the NIBER® rootstock controlled the scion by modulating responses to salinity.


Asunto(s)
Raíces de Plantas , Salinidad , Estrés Fisiológico , Hibridación Genética , Raíces de Plantas/fisiología , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
6.
Front Plant Sci ; 10: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745905

RESUMEN

In vegetables, tolerance to drought can be improved by grafting commercial varieties onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with drought stress. In previous results, the A25 pepper rootstock accession showed good tolerance to drought in fruit production terms compared with non-grafted plants and other rootstocks. The aim of this work was to study if short-term exposure to drought in grafted plants using A25 as a rootstock would show tolerance to drought now. To fulfill this objective, some physiological processes involved in roots (rootstock) and leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), self-grafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were grown under severe water stress induced by PEG addition (-0.55 MPa) or under control conditions for 7 days in hydroponic pure solution. According to our results, water stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), which indicated that mechanisms stimulated by roots are essential to withstand stress. A/A25 had a bigger root biomass compared with plants A and A/A that resulted in better water absorption, water retention capacity and a sustained CO2 assimilation rate. Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, the photosynthesis rate lowered due to stomatal closure, which limited transpiration. Consequently, part of NO3 - uptake was reduced in roots. This condition limited water uptake and CO2 fixation in plants A and A/A under drought stress, and accelerated oxidative damage by producing reactive oxygen species (ROS) and H2O2, which were highest in their leaves, indicating great sensitivity to drought stress and induced membrane lipid peroxidation. However, drought deleterious effects were slightly marked in plants A compared to A/A. To conclude, the A25 rootstock protects the scion against oxidative stress, which is provoked by drought, and shows better C and N balances that enabled the biomass to be maintained under water stress for short-term exposure, with higher yields in the field.

7.
Front Plant Sci ; 8: 1627, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979284

RESUMEN

Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

8.
J Plant Physiol ; 193: 1-11, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26918569

RESUMEN

The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by the lack of negative effects on photosynthesis that support the maintained plant growth and increased marketable yield of the grafted plants.


Asunto(s)
Capsicum/fisiología , Fotosíntesis/fisiología , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Capsicum/efectos de los fármacos , Catalasa/metabolismo , Clorofila/metabolismo , Clorofila A , Malondialdehído/metabolismo , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Transpiración de Plantas/fisiología , Prolina/metabolismo , Salinidad , Tolerancia a la Sal , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
9.
Plant Sci ; 230: 12-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25480004

RESUMEN

Grafting has been proposed as an interesting strategy that improves the responses of crops under salinity. In pepper, we reported increased fruit yield of the commercial 'Adige' cultivar under salinity when grafted onto accessions Capsicum chinense Jacq. 'ECU-973' (12) and Capsicum baccatum L. var. pendulum 'BOL-58' (14), whereas no effect was observed when grafted onto accession Capsicum annuum L var. 'Serrano' (5). We also analysed the physiological and biochemical mechanisms related to the tolerance conferred by these rootstocks. Responses to salinity (40 mM NaCl) were studied in the different plant combinations for 30 days by determining water relations, mineral content, proline accumulation, photosynthetic parameters, nitrate reductase activity and antioxidant capacity. Higher salt tolerance was achieved when the 'Adige' cultivar was grafted onto the 12 genotype, which allowed not only lower Na(+) and Cl(-) accumulation in the scion, but also ion selectivity maintenance, particularly Na(+)/K(+) discrimination. These traits led to a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion leaves. This work suggests that using tolerant pepper rootstocks that maintain the scion's ion homeostasis is a promising strategy to provide salinity tolerance and can consequently improve crop yield.


Asunto(s)
Capsicum/fisiología , Transporte Iónico , Tolerancia a la Sal , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Peroxidación de Lípido , Nitrato-Reductasa/metabolismo , Presión Osmótica , Fotosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Prolina/metabolismo , Salinidad , Estrés Fisiológico
10.
J Plant Physiol ; 171(10): 842-51, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24877676

RESUMEN

Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks.


Asunto(s)
Capsicum/fisiología , Fotosíntesis/fisiología , Estrés Fisiológico , Agua/fisiología , Antioxidantes/metabolismo , Capsicum/efectos de los fármacos , Capsicum/enzimología , Clorofila/metabolismo , Deshidratación , Peroxidación de Lípido , Nitrato-Reductasa/metabolismo , Presión Osmótica , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/fisiología , Polietilenglicoles/farmacología , Prolina/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA