Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 3(9): 11497-11503, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459251

RESUMEN

Graphitic nanoparticles, specifically, graphene oxide (GO) nanoflakes, are of major interest in the field of nanotechnology, with potential applications ranging from drug delivery systems to energy storage devices. These applications are possible largely because of the properties imparted by various functional groups attached to the GO surface by relatively simple production methods compared to pristine graphene. We investigated how varying the size and oxidation of GO flakes can affect their structural and dynamic properties in an aqueous solution. The all-atom modeling of the GO nanoflakes of different sizes suggested that the curvature and roughness of relatively small (3 × 3 nm) GO flakes are not affected by their degree of oxidation. However, the larger (7 × 7 nm) flakes exhibited an increase in surface roughness as their oxidation increased. The analysis of water structure around the graphitic nanoparticles revealed that the degree of oxidation does not affect the water dipole orientations past the first hydration layer. Nevertheless, oxygen functionalization induced a well-structured first hydration layer, which manifested in identifiable hydrophobic and hydrophilic patches on GO. The detailed all-atom models of GO nanoflakes will guide a rational design of functional graphitic nanoparticles for biomedical and industrial applications.

2.
PLoS One ; 12(10): e0186219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023509

RESUMEN

Although several computational modelling studies have investigated the conformational behaviour of inherently disordered protein (IDP) amylin, discrepancies in identifying its preferred solution conformations still exist between various forcefields and sampling methods used. Human islet amyloid polypeptide has long been a subject of research, both experimentally and theoretically, as the aggregation of this protein is believed to be the lead cause of type-II diabetes. In this work, we present a systematic forcefield assessment using one of the most advanced non-biased sampling techniques, Replica Exchange with Solute Tempering (REST2), by comparing the secondary structure preferences of monomeric amylin in solution. This study also aims to determine the ability of common forcefields to sample a transition of the protein from a helical membrane bound conformation into the disordered solution state of amylin. Our results demonstrated that the CHARMM22* forcefield showed the best ability to sample multiple conformational states inherent for amylin. It is revealed that REST2 yielded results qualitatively consistent with experiments and in quantitative agreement with other sampling methods, however far more computationally efficiently and without any bias. Therefore, combining an unbiased sampling technique such as REST2 with a vigorous forcefield testing could be suggested as an important step in developing an efficient and robust strategy for simulating IDPs.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/química , Modelos Moleculares , Simulación por Computador , Humanos , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA