RESUMEN
BACKGROUND: Somatic mutations of the TP53 gene occur frequently in pancreatic ductal adenocarcinoma (PDA). Solute carrier family 45 member A4 (SLC45A4) is a H+ -dependent sugar cotransporter. The role of SLC45A4 in PDA, especially in TP53 mutant PDA, remains poorly understood. METHODS: We explored the TCGA datasets to identify oncogenes in TP53 mutant PDA. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium], colony formation and 5-ethynyl-2'-deoxyuridine (Edu) assays were performed to investigate the function of SLC45A4 in vitro. Glucose consumption, lactate production and ATP production were detected to evaluate glucose utilization. Extracellular acidification rate and oxygen consumption rate assays were used to evaluate glycolysis and oxidative phosphorylation. The subcutaneous xenotransplantation models were conducted to explore the function of SLC45A4 in vivo. RNA-sequencing and gene set enrichment analysis were employed to explore the biological alteration caused by SLC45A4 knockdown. Western blotting was performed to evaluate the activation of glycolysis, as well as the AMPK pathway and autophagy. RESULTS: SLC45A4 was overexpressed in PDA for which the expression was significantly higher in TP53 mutant PDA than that in wild-type PDA tissues. Moreover, high level of SLC45A4 expression was tightly associated with poor clinical outcomes in PDA patients. Silencing SLC45A4 inhibited proliferation in TP53 mutant PDA cells. Knockdown of SLC45A4 reduced glucose uptake and ATP production, which led to activation of autophagy via AMPK/ULK1 pathway. Deleting SLC45A4 in TP53 mutant HPAF-II cells inhibited the growth of xenografts in nude mice. CONCLUSIONS: The present study found that SLC45A4 prevents autophagy via AMPK/ULK1 axis in TP53 mutant PDA, which may be a promising biomarker and therapeutic target in TP53 mutant PDA.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/fisiopatología , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas/fisiopatología , Simportadores/fisiología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Glucólisis , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Transducción de Señal , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/genéticaRESUMEN
BACKGROUND: Defective autophagy is thought to contribute to the pathogenesis of many diseases, including cancer. Human plasmacytoma variant translocation 1 (PVT1) is an oncogenic long non-coding RNA that has been identified as a prognostic biomarker in pancreatic ductal adenocarcinoma, but how PVT1 operates in the regulation of autophagy in pancreatic ductal adenocarcinoma (PDA) is unclear. METHODS: PVT1 expression level was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and hybridization in situ (ISH). Western blot or qRT-PCR was performed to assess the ULK1 protein or mRNA level. Autophagy was explored via autophagic flux detection under a confocal microscope and autophagic vacuoles investigation under a transmission electron microscopy (TEM). The biological role of PVT1 in autophagy and PDA development was determined by gain-of-function and loss-of-function assays. RESULTS: We found that PVT1 levels paralleled those of ULK1 protein in PDA cancer tissues. PVT1 promoted cyto-protective autophagy and cell growth by targeting ULK1 both in vitro and in vivo. Moreover, high PVT1 expression was associated with poor prognosis. Furthermore, we found that PVT1 acted as sponge to regulate miR-20a-5p and thus affected ULK1 expression and the development of pancreatic ductal adenocarcinoma. CONCLUSIONS: The present study demonstrates that the "PVT1/miR-20a-5p/ULK1/autophagy" pathway modulates the development of pancreatic ductal adenocarcinoma and may be a novel target for developing therapeutic strategies for pancreatic ductal adenocarcinoma.
Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Carcinoma Ductal Pancreático/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismoRESUMEN
BACKGROUND: Transforming growth factor (TGF)-ß-activated kinase 1 (TAK1) is one of the major regulators of inflammation-induced cancer cell growth and progression. MiR-143 dysregulation is a common event in a variety of human diseases including pancreatic ductal adenocarcinoma (PDA). AIMS: To identify the interaction between TAK1 and miR-143 in PDA. METHODS: Data mining of TAK1 expression in PDA patient gene profiling was conducted. QRT-PCR and western blot were performed to detect the expression of TAK1 in PDA tissues and cell lines. Ectopic miR-143 and TAK1 were introduced to PDA cells. Cell growth, apoptosis and migration were examined. Xenograft models were used to examine the function of TAK1 in vivo. Western blot and luciferase assay were carried out to investigate the direct target of miR-143. RESULTS: PDA patient gene profiling data (GSE15471 and GSE16515) showed that TAK1 mRNA was aberrantly up-regulated in PDA tissues. TAK1 protein levels were overexpressed in PDA tissues and cell lines. Overexpression of TAK1 was strongly associated with positive lymph node metastasis. Inhibition of TAK1 suppressed cell growth, migration, and induced cell apoptosis in vitro and in vivo. Further studies demonstrated that TAK1 was a direct target gene of miR-143. MiR-143 also inhibited PDA cells proliferation and migration, induced apoptosis and G1/S arrest. Moreover, TAK1 depletion inactivated MAPK and NF-κB pathway, mimicking the function of miR-143. CONCLUSIONS: The study highlights that miR-143 acts as a tumor suppressor in PDA through directly targeting TAK1, and their functional regulation may provide potential therapeutic strategies in clinics.
Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Anciano , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , FN-kappa B/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
The role of circular RNAs (circRNAs) in glucose metabolism in pancreatic duct adenocarcinoma (PDAC) remains elusive. Through RNA sequencing of cells cultured under conditions of glucose deprivation, we identified hsa_circ_0007590. Sanger sequencing and RNase R and Act D treatments were performed to confirm the circular RNA features of hsa_circ_0007590. RNA in situ hybridization (RNA-ISH) and quantitative reverse transcription PCR (qRT-PCR) were used to estimate hsa_circ_0007590 expression in PDAC clinical specimens and cell lines. hsa_circ_0007590 expression was higher in PDAC patients and closely related to the clinicopathological characteristics of the disease. Cytoplasmânuclear fractionation and FISH assays demonstrated that hsa_circ_0007590 was located in the nucleus. Gain-of-function and loss-of-function assays were performed to assess the biological behaviors of PDAC cells. Seahorse XF assays were performed to validate the Warburg effect. hsa_circ_0007590 facilitated the proliferation, migration, and invasion of PDAC cells and promoted the Warburg effect. Mass spectrometry, RNA pulldown, RNA immunoprecipitation (RIP), RNA m6A quantification, m6A dot blot, MeRIP, and Western blotting were conducted to investigate the detailed mechanism through which hsa_circ_0007590 produces these effects. Mechanistically, hsa_circ_0007590 targeted PTBP1 and increased the expression of the m6A reader protein YTHDF2, leading to PTEN mRNA degradation and PI3K/AKT/mTOR pathway activation. Overall, hsa_circ_0007590, which targets PTBP1, reprograms glucose metabolism by attenuating the stability of m6A-modified PTEN mRNA and holds potential promise as a therapeutic target for PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Glucosa , Ribonucleoproteínas Nucleares Heterogéneas , Fosfohidrolasa PTEN , Neoplasias Pancreáticas , Proteína de Unión al Tracto de Polipirimidina , ARN Circular , Humanos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Glucosa/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Ratones , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Femenino , Línea Celular Tumoral , Estabilidad del ARN , Persona de Mediana EdadRESUMEN
Early metastasis and resistance to traditional therapy are responsible for the poor prognosis of pancreatic adenocarcinoma patients. Metal-dependent protein phosphatases (PPMs) have been proven to play a crucial role in the initiation and progression of various tumors. Nevertheless, the expression and function of distinct PPMs in pancreatic adenocarcinoma have not been fully elucidated. In this study, we investigated the mRNA expression level, prognostic value, and the relationship between the expression of PPMs and the tumor microenvironment in pancreatic adenocarcinoma using Oncomine, TCGA and GTEx, GEO, Kaplan-Meier plotter, STRING, GeneMANIA, and HPA databases and R packages. GO and KEGG analysis revealed that PPMs and their differential co-expression genes are attributed to cell-cell adhesion and immune cell infiltration. Among these, PPM1K was downregulated in the tissue and peripheral blood of PAAD patients, whose expression level was negatively related to poor prognosis. Further to this, PPM1K was found to play a role in the epithelial-mesenchymal transition and immune infiltration. ROC curves showed that PPM1K had a good predictive value for pancreatic adenocarcinoma. The knockdown of PPM1K markedly promoted the proliferation and migration of pancreatic cancer cells, confirming its role in tumor suppressor activity in PAAD. This study demonstrates the potential clinical utility of PPM1K in tumor immunotherapy and brings about novel insights into the prognostic value of PPM1K in pancreatic adenocarcinoma.
RESUMEN
Pancreatic carcinogenesis is a complicated and multi-step process. It is substantially assisted by N6-methyladenosine (m6A) RNA modification, especially when mutations of driver genes (KRAS, TP53, CDKN2A, and SMAD4) occur. However, the underlying mechanism remains obscure. In this research, we identified m6A regulators as potential biomarkers when mutations of driver genes occur, and investigated the role of these m6A candidates in pancreatic ductal adenocarcinoma (PDA). We first estimated the abnormal expression patterns of potential m6A regulators when all the driver genes are mutated, using The Cancer Genome Atlas and Gene Expression Omnibus databases. METTL16, an m6A"writer," was chosen as a unique candidate of PDA, owing to its markedly differential expression under mutations of all driver genes (KRAS, TP53, CDKN2A, and SMAD4) and its favorable prognostic value. Moreover, METTL16 was under-expressed in PDA tissues and cell lines. Consistently, gain- and loss-of-function experiments indicated that it had a tumor suppressor role in vitro and in vivo. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that METTL16 may have an effect on the tumor microenvironment. Notably, a markedly positive association between METTL16 expression and infiltration of B cells and CD8+ T cells was observed according to the CIBERSORT and TIMER databases. Enhanced expression of immune checkpoints and cytokines was elicited in patients with over-expression of METTL16. Notably, decreased expression of PD-L1 was observed when upregulation of METTL16 expression occurred in MIA PaCa-2 cells, while increased expression of PD-L1 existed when downregulation of METTL16 happened in HPAF-II cells. Collectively, these findings highlight the prognostic value of METTL16, and indicate that it is a potential immunotherapy target that could be used to regulate the tumor microenvironment and promote antitumor immunity in PDA.
RESUMEN
Emerging evidence has demonstrated that circular RNAs (circRNAs) take part in the initiation and development of pancreatic ductal adenocarcinoma (PDA), a deadly neoplasm with an extremely low 5-year survival rate. Reprogrammed glucose metabolism is a key feature of tumour development, including PDA. In this research, we evaluated the role of circRNAs in reprogrammed glucose metabolism in PDA. RNA sequencing under various glucose incubation circumstances was performed. A new circMYOF was identified. Sanger sequencing and RNase R treatment confirmed its circular RNA characteristics. Real-time PCR indicated that it was highly expressed in PDA clinical specimens and cell lines. Gain-of- and loss-of-function assays showed that circMYOF induced progression in PDA. Mechanistically, RNA pull-down and luciferase reporter experiments elucidated that circMYOF, as a competing endogenous RNA for miR-4739, facilitated glycolysis via the VEGFA/PI3K/AKT pathway. Taken together, our findings indicate that circMYOF may work as a desirable biomarker and therapeutic target for PDA patients.
RESUMEN
Hepatic perivascular epithelioid cell neoplasm (PEComa) is a rare type of neoplasm derived from mesenchymal tumors that is often misdiagnosed as hepatocellular carcinoma (HCC), hepatic hemangioma or other liver malignancies. The clinical and histological characteristics of PEComa have yet to be fully documented. To optimize the diagnosis and treatment of the disease, a retrospective analysis was performed to investigate the clinicopathological characteristics of 7 patients diagnosed with hepatic PEComa in the Sun Yat-Sen Memorial Hospital between January 2004 and December 2015. Briefly, all the patients lacked specific symptoms, and a serological examination provided no further useful information. Additionally, non-specific imaging manifestations were observed. Microscopically, detection of epithelioid or spindle-shaped cells with adipocytes was suggestive of the disease, and an analysis of biomarkers, including the monoclonal antibody HMB-45, the melanocytic differentiation marker, Melan-A, and smooth muscle α-actin (SMA), helped to confirm the diagnosis. Regarding the treatment, 6 patients (85.7%) received surgical resection procedures, and 1 patient (14.3%) was admitted for tumor arterial embolization and percutaneous microwave coagulation therapy. After a follow-up period of 12-20 months, no recurrence was observed. Taken together, hepatic PEComa should be suspended in patients with a liver tumor with asymptomatic manifestation and normal serological test results. In imaging studies, hepatic PEComa was able to mimic HCC, hepatic hemangioma and metastatic tumor, although the mass did not invade the adjacent organs and vessel. The definitive diagnosis was made on the basis of the typical morphological features and notable markers of the tumor tissue. It is recommended that patients with PEComa in a benign pattern deserve serial imaging follow-up, but surgery is indicated in patients suffering from large tumors (>5 cm), or progressive enlargement or malignant tendency.
RESUMEN
The human genome contains thousands of long intergenic noncoding RNAs (lincRNAs). However, the functional roles of these transcripts and the mechanisms responsible for their deregulation in colorectal cancer (CRC) remain elusive. A novel lincRNA termed upregulated in CRC (UCC) was found to be highly expressed in human CRC tissues and cell lines. UCC levels correlated with lymph node metastasis, Dukes' stage, and patient outcomes. In SW480 and SW620 cells, knockdown of UCC inhibited proliferation, invasion, and cell cycle progression and induced apoptosis in vitro. Xenograft tumors grown from UCC-silenced SW620 cells had smaller mean volumes and formed more slowly than xenograft tumors grown from control cells. Inversely, overexpression of UCC in HCT116 promoted cell growth and invasion in vitro. Bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation assays showed that miR-143 can interact with UCC, and we found that UCC expression inversely correlates with miR-143 expression in CRC specimens. Moreover, mechanistic investigations showed that UCC may act as an endogenous sponge by competing for miR-143, thereby regulating the targets of this miRNA. Our results suggest that UCC and miR-143 may be promising molecular targets for CRC therapy.
Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Animales , Células CACO-2 , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , ARN Neoplásico/genéticaRESUMEN
Noncoding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer. The best-characterized ncRNAs are the microRNAs (miRNAs), which are short, approximately 22-nucleotide sequences of RNA of approximately 22-nucleotide in length that regulate gene expression at the posttranscriptional level, through transcript degradation or translational repression. MiRNAs can function as master gene regulators, impacting a variety of cellular pathways important to normal cellular functions as well as cancer development and progression. In addition to miRNAs, long ncRNAs, which are transcripts longer than 200 nucleotides, have recently emerged as novel drivers of tumorigenesis. However, the molecular mechanisms of their regulation and function, and the significance of other ncRNAs such as piwi-interacting RNAs in pancreas carcinogenesis are largely unknown. This review summarizes the growing body of evidence supporting the vital roles of ncRNAs in pancreatic cancer, focusing on their dysregulation through both genetic and epigenetic mechanisms, and highlighting the promise of ncRNAs in diagnostic and therapeutic applications of pancreatic cancer.