Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Small ; : e2310847, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385814

RESUMEN

Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1 ) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM -skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.

2.
Langmuir ; 38(32): 9955-9966, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35894171

RESUMEN

The unbalanced evaporation of solvents in low-temperature sintered inks for printed electronics leads to a series of problems in the actual printing process, including printed pattern distortion, surface cracking, and the coffee ring effect, which has become a serious obstacle to this technique. Here, we present a comprehensive investigation of the influence of the solvent composition, environmental, and sintering conditions on the complicated pattern formation process of reactive silver inks. The results first showed that only inks with a certain wettability of solvents could form well-defined patterns. Then, the solvent composition and ambient humidity can be adjusted to balance the nonequilibrium evaporative flow within the liquid and thus to obtain a flat liquid film. Combined with the rapid UV sintering process, the particle size, porosity, and roughness could be controlled to produce dense and homogeneous silver films. Finally, we successfully printed silver electrodes with a smooth and dense surface (Rqs ∼ 21 nm in 0.8 × 0.8 mm2 area and less than 1% porosity) under an optimized relative humidity (RH) of 50-60% at room temperature with the solvent composition of IPA (isopropanol)/2,3-BD (2,3-butanediol) = 8:2. In addition, we also demonstrated high-performance Pr-IZO (praseodymium-doped indium-zinc oxide) thin film transistors (TFTs) with a mobility (µsat) of 2.14 cm2/V/s and Ion/Ioff ratio of over 107 using source-drain electrodes printed under optimized conditions.

3.
Langmuir ; 37(19): 5979-5985, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33961745

RESUMEN

Polymer/oxide hybrid thin films, which have excellent electrical and mechanical performance, can be effectively fabricated through the sol-gel process, showing great potential in the future printed electronics. However, gelation of polymer/oxide ink systems can easily occur during a thermal process in which case capillary stress can lead to the crack of printed films due to the long period of stress accumulation. To solve this problem, the effect of different solvent systems on formed PAM/ZrOx hybrid films, which were printed by piezoelectric printing, was studied in this paper, including single solvent systems of glycol and binary solvent systems of glycol and water. The result showed that the microstructure characteristics and mechanical properties of hybrid nanostructures formed in different solvent systems varied significantly, and crack behavior can be regulated by simply adjusting the water volume ratio of the solvent system. The crack formation was significantly inhibited when the water volume ratio reached 25%.

4.
Nanotechnology ; 32(45)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34415853

RESUMEN

Unlike the traditional fabrication of distributed Bragg reflector (DBR) structure via atomic layer deposition or spin-coating, here the 1-6 pairs of magnesium fluoride (MgF2)/zinc sulfide (ZnS) alternative dielectric layers were grown via thermal evaporation. The absorption, transmission, reflection, and photoluminescence (PL) spectra were evaluated. 5 pair MgF2/ZnS denotes the largest reflectance (88.5% at 535 nm) together with a stopband at 450-650 nm among the 1- 6 pair dielectric layers, exhibiting the potential for using as DBR. Relative to the bare 4,4'-bis(carbazol-9-yl)biphenyl(CBP):(4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophthalonitrile (4CzIPN) film, the PL intensity of CBP:4CzIPN/5 pair MgF2/ZnS DBR is enhanced and splitted into two peaks. The 5 pair alternative dielectric film presents more uniform aggregation over 4 pair MgF2/ZnS. The cross-sectional scanning electron microscopic image denotes explicit layering for the MgF2and ZnS. The organic light-emitting diode (OLED) incorporating 5 pair MgF2/ZnS DBR layers illustrates significantly improved electroluminescent (EL) performance due to the photons concentrated in the direction perpendicular to the DBR. The slightly narrowed EL spectrum is originated from the microcavity effect between the two Al electrodes. Here we develop a universal method for the DBR fabrication suitable to most of OLEDs.

5.
Langmuir ; 36(30): 8655-8667, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32633966

RESUMEN

Drop-on-demand printing is a noncontact direct patterning and rapid manufacturing printing technology which shows considerable potential in future display manufacturing. Metal oxides are an important kind of functional material in thin-film transistors, which are the core component of active matrix display technology, and thus printing a high-quality metal oxide functional layer is of great importance. In this feature article, we focused on the current progress in one of the foundations of drop-on-demand printing technology-the ink system. We explained the basic principles of a metal oxide ink system for printed electronics and summarized the applications of several kinds of ink systems in thin film transistor printing. Meanwhile, we also summed up problems that printed thin film transistors are facing as well as the corresponding solutions from the aspect of ink systems.

6.
Langmuir ; 34(22): 6413-6419, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750535

RESUMEN

Many methods have been reported to prevent the nonuniformity of inkjet printing structures. Most of them depend on the balance of the capillary flow in the printing pattern during the evaporation of the solvent. However, as the relation of evaporation and capillary flow can obviously vary among different ink systems, it is difficult for a method to fit most of the situations. Therefore, it would be a promising way to eliminate any capillary flow before solvent evaporation so that morphology of the printing structure will not be affected by the evaporation behavior of the ink system. In this paper, a novel method of direct inkjet printing of a uniform metal oxide structure is reported. We introduce a polymer polyacrylamide and a surfactant FSO into a sol-gel ink system, and the new ink system can gel from the printing pattern edge to center as temperature increases because of the cross-linking of the polymer chains. By that means, transport of solute molecules and solvent molecules is limited. Meanwhile, the surfactant can ensure that the solute in the central liquid phase deposits uniformly by enhancing the Marangoni flow during the gelation process. The ZrO2 film with uniform morphology was fabricated by drying and annealing the gelating film and afforded a leakage current density of 7.48 × 10-7 A cm-2 at 1 MV and a breakdown field of 1.9 MV cm-1 at an annealing temperature of 250 °C.

7.
Soft Matter ; 14(46): 9402-9410, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30421779

RESUMEN

Ultrashort channels of electrodes are essential for the construction of advanced functional devices with high-level integration and high operation speed. However, the channel length of fabricated electrodes is limited to 20 µm in inkjet printing. Although several methods have been previously proposed to obtain short channels, they require extra processing steps. In this paper, channel self-aligning phenomenon was observed in directly patterned electrodes on unmodified substrate by inkjet printing, when using an interspace defects growing method. Further exploring the underlying mechanism reveals that the capillary force induced air film prevents droplets coalescence, even on a substrate with no temperature differences. The wetting region, which is generated by the receding droplets impingement, will draw droplets closer together at a larger drop space, thus demanding smaller air pressure for coalescence inhibition and contributing to the self-aligning phenomenon of micro-sized droplets released by inkjet printing. Accordingly, an ultrashort channel of 2.38 µm is obtained with relatively smooth boundaries, when electrodes are printed on a slightly heated substrate, which reduces the air pressure between two neighboring droplets. This work will provide a significant reference for future high resolution applications of inkjet printing technology.

8.
Nanotechnology ; 27(49): 494003, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827342

RESUMEN

A laminated structure of Al2O3 and MgO deposited by atomic layer deposition (ALD) is used to realize a thin film encapsulation technology in organic light-emitting diodes (OLEDs). This film was targeted to achieve an excellent barrier performance. As the thickness of MgO layer increased from 0 nm to 20 nm, its physical properties transformed from the amorphous state into a crystalline state. The optimized cyclic ratio of ALD Al2O3 and MgO exhibited much lower water vapor transmission rate (WVTR) of 4.6 × 10-6 gm-2/day evaluated by Calcium (Ca) corrosion at 60 °C&100% RH, owing to the formation of a terrific laminated structure. Top-emitting OLEDs encapsulated with laminated Al2O3/MgO show longer operating lifetime under rigorous environmental conditions. These improvements were attributed to the embedded MgO film that served as a modified layer to establish a laminated structure to obstruct gas permeation, as well as a scavenger to absorb water molecules, thus alleviating the hydrolysis of bulk Al2O3 material.

9.
Nanotechnology ; 27(28): 284001, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27250786

RESUMEN

In this work, the ß-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the ß-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

10.
J Am Chem Soc ; 137(23): 7282-5, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26035342

RESUMEN

We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

11.
Macromol Rapid Commun ; 35(22): 1960-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25284276

RESUMEN

DTfBT-Th(3), a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of -5.27 eV. Due to strong interchain aggregation, DTfBT-Th(3) can not be well dissolved in chloro-benzene (CB) and o-dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT-Th(3) displays a field-effect hole mobility of 0.55 cm(2) V(-1) s(-1) when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm(2) V(-1) s(-1) In DTfBT-Th(3) -based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150-300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB-processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a "wet control" process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.


Asunto(s)
Suministros de Energía Eléctrica , Polímeros/química , Energía Solar , Tiadiazoles/química , Tiofenos/química , Transistores Electrónicos , Técnicas Electroquímicas , Estructura Molecular , Polímeros/síntesis química , Solventes/química , Temperatura
12.
Recent Pat Nanotechnol ; 18(2): 117-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37005510

RESUMEN

BACKGROUND: Electrochromic materials can dynamically change their optical properties (such as transmittance, absorbance, and reflectance under the action of an applied voltage, and their research and application in the visible band have been widely concerned. In recent years, with the continuous development of electrochromic technology, the related research has been gradually extended to the infrared region. OBJECTIVE: This invited review aims to provide an overview of the current status of several inorganic infrared electrochromic materials, to provide some references for future research, and to promote the research and application of electrochromic technology in the infrared region. METHODS: This review summarizes various research results in the field of infrared electrochromic, which includes a detailed literature review and patent search. Starting from the key performance parameters and device structure characteristics of infrared electrochromic devices (ECDs), the research and progress of several types of inorganic infrared electrochromic materials, including metal oxides, plasma nanocrystals, and carbon nanomaterials, are mainly presented, and feasible optimization directions are also discussed. CONCLUSION: We believe that the potential of these materials for civilian and military applications, for example, infrared electrochromic smart windows, infrared stealth/disguise, and thermal control of spacecraft, can be fully exploited by optimizing the materials and their devices to improve their performance.

13.
ACS Appl Mater Interfaces ; 16(21): 27560-27565, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757777

RESUMEN

A direct soft imprint lithography was proposed to realize the direct fabrication of residue-free, well-shaped functional patterns through a single step. This imprint method requires only a simply prepared isopropanol-treated polydimethylsiloxane (PDMS) stamp without any additional resists. Residue-free Ag patterns were successfully fabricated on different substrates by directly imprinting the Ag ink with the isopropanol-treated PDMS stamp. Furthermore, the coffee-ring effect of the imprinting Ag patterns can be eliminated by optimizing the imprinting time, isopropanol-treating time, and imprinting temperatures. Studies show that the residual Ag ink in the contact region can be absorbed by the isopropanol-treated PDMS stamp due to the "like dissolves like" principle. Finally, this method was employed to fabricate the Ag electrodes for the thin-film transistors, attaining a mobility of ∼8 cm2 V-1 s-1, which is comparable to those with vacuum-processed electrodes. This process provides a simple, low-cost, residue-free, coffee-ring-free, and fast patterning method in the field of microelectronics.

14.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869533

RESUMEN

In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10-11 A vs. 1.66 × 10-12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = -10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V).

15.
ACS Appl Mater Interfaces ; 15(33): 39797-39806, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37561419

RESUMEN

Multiwavelength organic lasers have attracted considerable interest in recent years due to the cost efficiency, wide luminescence coverage, and simple processability of organics. In this work, by simply spin coating immiscible polymeric gain media in sequence, dual-wavelength (blue-green or blue-red) amplified spontaneous emission (ASE) was achieved in bilayer devices. The blue emission, water/alcohol-soluble conjugated polyelectrolyte, poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), was used as the bottom layer. The commercially available nonpolar solvent soluble polymer poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and its blend with poly(3-hexylthiophene) (P3HT) were used as the top active layers offering green and red emission, respectively. This novel compact configuration, without interlayers between the two active layers, offers potential for developing various applications. The carefully selected top and bottom layer polymers not only meet the conditions of immiscibility and different emission wavelength range but also have a common absorption band in UV, which allows simultaneous blue-green or blue-red dual-color ASE behaviors observed in the bilayer devices under the same 390 nm laser excitation. By introducing two-dimension (2D) square distributed feedback (DFB) gratings with different periods (300 nm for blue, 330 nm for green, and 390 nm for red) as cavities, single mode blue-green (Eth = 245 µJ cm-2) and blue-red (Eth = 189 µJ cm-2) lasers were achieved by focusing the excitation laser spot on different 2D DFB gratings area. Furthermore, we found it possible to gain sufficient light confinement for red emission along its diagonal direction (Λ âˆ¼424 nm), whereas the 2D DFB gratings offer feedback for blue emission from the 300 nm period along the rectangle direction. Therefore, both blue and red lasers were eventually achieved in the same PFN-Br/F8BT:P3HT bilayer device on the single 2D DFB gratings with a period of 300 nm in this work.

16.
ACS Appl Mater Interfaces ; 15(2): 3621-3632, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598168

RESUMEN

Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 µm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 µm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.

17.
ACS Appl Mater Interfaces ; 15(14): 18372-18378, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987738

RESUMEN

High-performance phototransistor-based solar-blind (200-280 nm) ultraviolet (UV) photodetectors (PDs) are constructed with a low-cost thin-film ZnO/Ga2O3 heterojunction. The optimized PD shows high spectral selectivity (R254/R365 > 1 × 103) with a photo-to-dark current ratio of ∼104, a responsivity of 113 mA/W, a detectivity of 1.25 × 1012 Jones, and a response speed of 41 ms under 254 nm UV light irradiation. It is found that the gate electrode of a three-terminal phototransistor can amplify the responsivity and increase the photo-to-dark current ratio because of the different densities of field-induced electrons at different gate biases. In addition, the built-in electric field at the ZnO/Ga2O3 heterojunction interface can control the distribution of the photoinduced electrons and the total conductivity of the heterojunction, which can further enhance device performance. Together with the simple fabrication process, the achieved results suggest that the three-terminal ZnO/Ga2O3 heterojunction phototransistor is a promising candidate for highly sensitive solar-blind PDs.

18.
J Phys Chem Lett ; 14(43): 9677-9682, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37870981

RESUMEN

In this report, an ammonium metatungstate (AMT) and ferrous chloride [Fe(II)Cl2] electrochromic liquid (ECL) was synthesized using a hydrothermal method, with D2O used as the solvent instead of H2O. The results show that the use of D2O can improve the stability and performance of ECLs. The hydrogen evolution process in electrochromic devices (ECDs) filled with ECL becomes more difficult, while the material exchange process becomes easier. The ECD exhibits a color modulation amplitude of 58%@680 nm at 2 V. After 500 cycles, the device's performance remains above 95% at a current density of 1.5 mA/cm2. Hydrogen bonds in D2O solutions are expected to exhibit stronger forces compared to those in regular H2O solutions. Therefore, we hypothesize that enhancing the strength of hydrogen bonds in H2O solutions is an effective approach for improving the performance and stability of electrochromic solutions.

19.
J Phys Chem Lett ; 14(41): 9245-9249, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37812073

RESUMEN

In recent years, more and more attention has been paid to flexible thin-film transistors (TFTs). Therefore, we combined HfMgTiYZrOx high-entropy metal oxide and poly(vinyl alcohol) (PVA) organic material to prepare a flexible dielectric layer. We fabricated metal-insulator-metal (MIM) and TFT devices and carried out flexible tests. The test results show that the mixed dielectric layer attains a leakage current of 3.6 × 10-11 A under the bending radius of 5 mm. In the application of the TFT, the device still has good performance after 10 000 bends with a mobility of 3.1 cm2 V-1 s-1, an Ion/Ioff of 1.4 × 107, a threshold voltage of 3.3 V, and a threshold swing of 0.20 V/decade. In addition, the average transmittance of the hybrid dielectric layer in the visible range is 90.8%. Therefore, high-entropy PVA hybrid films have high transparency, low leakage current, and good bending resistance and have broad application prospects in transparent and flexible devices.

20.
Chem Soc Rev ; 40(7): 3509-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21483933

RESUMEN

This tutorial review presents some recent developments in the design, synthesis and implementation of organic solution-processable molecular fluorophores for non-doped electroluminescent [corrected] devices. After a brief presentation of the basic principles of operation and main characteristics of electroluminescent devices, some examples of active emitters representative of the main classes of non-doped molecular electrofluorophores will be discussed. Emphasis is placed on the relationships between the molecular structure and the electronic properties of molecular emitters, in which high photoluminescence efficiency, synthetic accessibility and processability are combined by design with additional functions such as hole and/or electron injection and transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA