Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Transl Med ; 22(1): 590, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915053

RESUMEN

Lung cancer is the primary cause of cancer-related death worldwide, and its global incidence and mortality rates remain high. The differential expression of circular RNAs (circRNAs) can affect the development of cancer, but the mechanisms by which circRNAs regulate lung cancer progression remain unclear. In this study, we identified circSORBS1, a circRNA that has not been previously described in lung cancer and is significantly underexpressed in lung cancer tissues, blood and cell lines, and the low expression of circSORBS1 correlated with tumour grade and prognosis. In vitro and in vivo functional experiments revealed that circSORBS1 overexpression inhibited cell proliferation and migration while enhancing apoptosis. Mechanistically, circSORBS1 acts as a sponge for miR-6779-5p, indirectly inhibiting RUFY3 mRNA degradation. Simultaneously, it binds to RUFY3 mRNA to enhance its stability. This dual regulatory mechanism leads to an increase in RUFY3 protein levels, which ultimately activates the YWHAE/BAD/BCL2 apoptotic signalling pathway and suppresses lung cancer progression. Our findings not only increase the knowledge about the regulatory pattern of circRNA expression but also provide new insights into the mechanisms by which circRNAs regulate lung cancer development.


Asunto(s)
Apoptosis , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , ARN Circular , ARN Mensajero , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Línea Celular Tumoral , Proliferación Celular/genética , Apoptosis/genética , Animales , Secuencia de Bases , Estabilidad del ARN/genética , Movimiento Celular/genética , Ratones Desnudos , Masculino , Femenino
2.
Cancer Sci ; 114(10): 3884-3899, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549641

RESUMEN

Accumulating evidence indicates that circular RNAs (circRNAs) are inextricably linked to cancer development. However, the function and mechanism of nucleus-localized circRNAs in hepatocellular carcinoma (HCC) still require investigation. Here, qRT-PCR and receiver-operating characteristic curve were used to detect the expression and diagnostic potential of circSLC39A5 for HCC. The biological function of circSLC39A5 in HCC was investigated in vitro and in vivo. Nucleoplasmic separation assay, fluorescence in situ hybridization, RNA pulldown, RNA immunoprecipitation, the HDOCK Server, the NucleicNet Webserver, crosslinking-immunoprecipitation, MG132 treatment, and chromatin immunoprecipitation were utilized to explore the potential molecular mechanism of circSLC39A5 in HCC. The results showed that circSLC39A5 was downregulated in both HCC tissues and plasma and was associated with satellite nodules and lymph node metastasis/vascular invasion. CircSLC39A5 was stably expressed in plasma samples under different storage conditions, showing good diagnostic potential for HCC (AUC = 0.915). CircSLC39A5 inhibited proliferation, migration, and invasion, facilitated the apoptosis of HCC cells, and was associated with low expression of Ki67 and CD34. Remarkably, circSLC39A5 is mainly localized in the nucleus and binds to the transcription factor signal transducer and activator of transcription 1 (STAT1), affecting its stabilization and expression. STAT1 binds to the promoter of thymine DNA glycosylase (TDG). Overexpression of circSLC39A5 elevates TDG expression and reverses the increase of proliferating cell nuclear antigen (PCNA) expression and the overactive cell proliferation caused by TDG silencing. Our findings uncovered a novel plasma circRNA, circSLC39A5, which may be a potential circulating diagnostic marker for HCC, and the mechanism by which nucleus-localized circSLC39A5 exerts a transcriptional regulatory role in HCC by affecting STAT1/TDG/PCNA provides new insights into the mechanism of circRNAs.

3.
Angew Chem Int Ed Engl ; 61(33): e202206128, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35695834

RESUMEN

Anomeric stereocontrol is usually one of the major issues in the synthesis of complex carbohydrates, particularly those involving ß-configured 2,6-dideoxyglycoside and d/l-rhamnoside moieties. Herein, we report that 2-(diphenylphosphinoyl)acetyl is highly effective as a remote stereodirecting group in the direct synthesis of these challenging ß-glycosides under mild conditions. A deoxy-trisaccharide as a mimic of the sugar chain of landomycin E was prepared stereospecifically in high yield. The synthetic potential was also highlighted in the synthesis of Citrobacter freundii O-antigens composed of a [→4)-α-d-Manp-(1→3)-ß-d-Rhap(1→4)-ß-d-Rhap-(1→] repeating unit, wherein the convergent assembly up to a nonasaccharide was realized with a strongly ß-directing trisaccharide donor. Variable-temperature NMR studies indicate the presence of intermolecular H-bonding between the donor and the bulky acceptor as direct spectral evidence in support of the concept of hydrogen-bond-mediated aglycone delivery.


Asunto(s)
Glicósidos , Oligosacáridos , Secuencia de Carbohidratos , Carbohidratos , Glicósidos/química , Antígenos O/química , Oligosacáridos/química , Trisacáridos/química
4.
Arch Microbiol ; 204(1): 58, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34939149

RESUMEN

Temperate phages are potential therapeutic agents, but only a few temperate phages infecting multidrug-resistant Acinetobacter baumannii have been identified. In this study, we isolated 5W, a temperate phage that infects multidrug-resistant A. baumannii, from pond water using the enrichment method. A member of the Siphoviridae family, 5W has a narrow host range and infected only four of 19 A. baumannii clinical isolates. It exhibited rapid adsorption (> 90% in 6 min), a latency period of 20 min, and a burst size of ~ 180 plaque-forming units (PFU/cell). 5W contains a linear double-stranded DNA (dsDNA) genome of 43,032 bp with a GC content of 39.85%. The 5W genome contains 61 open reading frames, including lysogen-forming genes, but lacks any known virulence and antibiotic resistance genes. The lysin of 5W is an N-acetyl-ß-D-muramidase belonging to the GH_108 family. The α-helical structure and highly positively charged amino acids in the C-terminal region indicate potential antibacterial activity against A. baumannii, and the M/S subunits of the restriction endonuclease are inserted into the lysogenic gene cluster. Comparative genome analysis revealed high similarity with two different prophages in A. baumannii ABCR01, suggesting that 5W may be derived from recombination of other prophages.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/genética , Bacteriófagos/genética , ADN Viral/genética , Genoma Viral/genética , Genómica
5.
Ecotoxicol Environ Saf ; 208: 111450, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039871

RESUMEN

Despite of growing evidence linking PM2.5 exposure to autophagic activity in various human cells, the functional significance of PM2.5 exposure affecting autophagy in the pathogenesis of human cardiovascular disease and the underlying molecular mechanisms remain unclear. In this study, the effects of ambient PM2.5 (with final concentration 0, 1, 5, 25 µg/mL) on the autophagic activity in human umbilical vein endothelial cells (HUVECs) were systematically studied. The results showed that the internalized PM2.5 mainly localized in the membrane-surrounded vacuoles in the cytoplasm. Compared with the negative control, dose-dependent increase of autophagosomes, puncta and protein levels of LC3-II and p62, and both dose- and time-dependent increase of AKT phosphorylation, with inversely time-dependent reduction of Beclin 1, ATG3 and ATG5 proteins, were presented in the PM2.5-treated HUVECs, indicating a clear impairment of autophagic degradation in the PM2.5-exposed HUVECs. Meanwhile, increase in lysosomes, LAMP1, proteases of CTSB and CTSD, and protein phosphorylation of ERK1/2 and TFEB was identified in the PM2.5-treated HUVECs, showing a PM2.5-mediated enhancement in lysosomal activity. A novel finding in this study is that both Sntaxin-17 and LAMP2, two key proteins involved in the control of membrane fusion between autophagosome and lysosome, were significantly decreased in the PM2.5-exposed HUVECs, suggesting that the fusion of autophagosome-lysosome was blocked up. Collectively, ambient PM2.5 exposure may block up the autophagic flux in HUVECs through inhibiting the expression of Sntaxin-17 and LAMP2. Autophagic activity in HUVECs is a useful biomarker for assessing risks of environmental factors to human cardiovascular health.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Material Particulado/toxicidad , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/antagonistas & inhibidores , Lisosomas/efectos de los fármacos , Fosforilación
6.
Anal Chem ; 91(21): 13349-13354, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31588733

RESUMEN

Biomarker receptors on cancer cells can sense and recruit extracellular ligands and ligand-conjugated imaging agents/drugs, providing a critical basis upon which to develop an active tumor-targeting strategy. However, such a strategy can be confounded by both the limited number of cancer biomarker receptors and the inherent heterogeneity of cancer cells. Therefore, we herein report a simple strategy to deploy an exogenous physical label on the surface of cancer cells as an artificial receptor (AR) for active tumor targeting. It can be driven by the tumor extracellular acidic microenvironment to insert into the plasma membrane of cancer cells. Our studies demonstrated that an AR could efficiently sense and recruit the extracellular imaging agent Cy5-streptavidin conjugate to cancer cells, cancer cell spheroids, and an in vivo tumor. Based on the easy synthesis and chemical modification diversity of the peptide, our AR holds promise as a novel tumor-targeted strategy.


Asunto(s)
Neoplasias , Imagen Óptica/métodos , Receptores Artificiales/química , Secuencias de Aminoácidos , Animales , Biotina/química , Carbocianinas/química , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Ratones , Neoplasias Experimentales , Péptidos/química , Estreptavidina/química , Microambiente Tumoral
7.
Environ Toxicol ; 34(11): 1199-1207, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31294929

RESUMEN

Despite intensive research activities, there are still many major knowledge gaps over the potential adverse effects of titanium dioxide nanoparticles (TiO2 -NPs), one of the most widely produced and used nanoparticles, on human cardiovascular health and the underlying mechanisms. In the present study, alkaline comet assay and cytokinesis-block micronucleus test were employed to determine the genotoxic potentials of four sizes (100, 50, 30, and 10 nm) of anatase TiO2 -NPs to human umbilical vein endothelial cells (HUVECs) in culture. Also, the intracellular redox statuses were explored through the measurement of the levels of reactive oxygen species (ROS) and reduced glutathione (GSH) with kits, respectively. Meanwhile, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were also detected by western blot. The results showed that at the exposed levels (1, 5, and 25 µg/mL), all the four sizes of TiO2 -NPs could elicit an increase of both DNA damage and MN frequency in HUVECs in culture, with a positive dose-dependent and negative size-dependent effect relationship (T100 < T50 < T30 < T10). Also, increased levels of intracellular ROS, but decreased levels of GSH, were found in all the TiO2 -NP-treated groups. Intriguingly, a very similar manner of dose-dependent and size-dependent effect relationship was observed between the ROS test and both comet assay and MN test, but contrary to that of GSH assay. Correspondingly, the levels of Nrf2 protein were also elevated in the TiO2 -NP-exposed HUVECs, with an inversely size-dependent effect relationship. These findings indicated that induction of oxidative stress and subsequent genotoxicity might be an important biological mechanism by which TiO2 -NP exposure would cause detrimental effects to human cardiovascular health.


Asunto(s)
Daño del ADN/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/química , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Glutatión/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Nanopartículas del Metal/química , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Curr Eye Res ; 49(1): 80-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37804222

RESUMEN

PURPOSE: To study the systemic inflammatory mediator levels in non-proliferative diabetic retinopathy (NPDR) patients with diabetic macular edema (DME) and explore the correlation between systemic inflammatory mediators and DME. METHODS: In this prospective study, we included 25 patients without diabetes (control group) and 75 patients with type 2 diabetes mellitus (diabetic group). According to fundus examination, the diabetic group patients were divided into: diabetic patients without diabetic retinopathy (DR) (Non-DR group), NPDR patients without DME (Non-DME group), and NPDR patients with DME (DME group). Serum levels of a broad panel of inflammatory mediators were analysed by multiplex protein quantitative detection technology based on a flow cytometry detection system. RESULTS: The interferon-γ (IFN-γ) levels were significantly higher in DME group and Non-DME group as compared to control group (p = 0.023 and p = 0.033) and Non-DR group (p = 0.009 and p = 0.015). Significantly higher values were obtained in DME group and Non-DME group as compared to control group for the interleukin-8 (IL-8) (p = 0.003 and p = 0.003). The IL-23 levels were significantly elevated in DME group and Non-DR group than in Non-DME group (p = 0.013 and p = 0.004). The diabetic group had significantly higher serum levels of IL-8 and IL-33 (p = 0.001 and p = 0.011), and lower serum levels of tumor necrosis factor-α (TNF-α) (p = 0.027) in comparison with control group. CONCLUSIONS: The changed levels of serum inflammatory mediators suggest that the systemic inflammatory mediators are involved in the pathogenesis of NPDR patients with DME. Such effects can guide clinical monitoring, diagnostic and therapeutic approaches for DME patients at an early stage.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Edema Macular , Humanos , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Edema Macular/diagnóstico , Edema Macular/etiología , Edema Macular/patología , Diabetes Mellitus Tipo 2/complicaciones , Interleucina-8 , Estudios Prospectivos
9.
Transl Res ; 270: 52-65, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552953

RESUMEN

The transcribed ultraconserved region (T-UCR) belongs to a new type of lncRNAs that are conserved in homologous regions of the rat, mouse and human genomes. A lot of research has reported that differential expression of T-UCRs can influence the development of various cancers, revealing the ability of T-UCRs as new therapeutic targets or potential cancer biomarkers. Most studies on the molecular mechanisms of T-UCRs in cancer have focused on ceRNA regulatory networks and interactions with target proteins, but the present study reveals an innovative dual-targeted regulatory approach in which T-UCRs bind directly to mRNAs and directly to proteins. We screened T-UCRs that may be related to colorectal cancer (CRC) by performing a whole-genome T-UCR gene microarray and further studied the functional mechanism of T-UCR uc.285+ in the development of CRC. Modulation of uc.285+ affected the proliferation of CRC cell lines and influenced the expression of the CDC42 gene. We also found that uc.285+ promoted the proliferation of CRC cells by directly binding to CDC42 mRNA and enhancing its stability while directly binding to CDC42 protein and affecting its stability. In short, our research on the characteristics of cell proliferation found that uc.285+ has a biological function in promoting CRC proliferation. uc.285+ may have considerable potential as a new diagnostic biomarker for CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , ARN Mensajero , Proteína de Unión al GTP cdc42 , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Unión Proteica , ARN no Traducido/genética , ARN no Traducido/metabolismo
10.
Heliyon ; 9(11): e20960, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920495

RESUMEN

The bake hardening value is one of the vital strength indexes of dual-phase steel, representing the strengthening ability of materials after pre-strain and baking, playing an important role in vehicle safety and lightweight design. Studying and improving the strain aging mechanism of dual-phase steel helps one to understand the material characteristics and enhances its utilization value. However, the ultra-high strength dual-phase steel is often prone to fracture outside the gauge length of a tensile specimen of the bake hardening value test. No suitable theory explains the fundamental law of dislocation pinning during the saturation stage at present. This paper used FEA, DIC, SEM, TEM, internal friction, and metallographic methods to study the strain aging behavior of dual-phase steels under different pre-strain, bake time, and bake temperature conditions. The results show that the fracture outside the gauge length is related to factors such as the uneven distribution of pre-strain and the ultra-high upper yield strength. The rolling pin shape tensile specimen testing has successfully solved this testing problem. The measured results at the saturation stage of dislocation pinning are in good agreement with the fitting results of the dislocation pinning strengthen mechanism based on the probability event quantization assumption.

11.
Mol Neurobiol ; 60(12): 7118-7135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37531026

RESUMEN

Circular RNAs are involved in intervention strategies for treating ischemic stroke (IS). However, circCNOT6L (hsa_circ_0006168) has not yet been reported in IS. Thus, we aimed to explore the potential role of circCNOT6L and its molecular mechanism in IS. In this study, we first found that the expression of both exosomal circCNOT6L (P = 0.0006) and plasma circCNOT6L (P = 0.0054) was down-regulated in IS patients compared with controls. Clinically, a negative correlation was observed between the relative expression level of circCNOT6L and the National Institutes of Health Stroke Scale (NIHSS) score and infarct volume of the brain. Simultaneously, the relative expression level of circCNOT6L was negatively associated with multiple risk factors for IS, such as mean platelet volume (MPV), red cell distribution width (RDW), very low-density lipoprotein (VLDL), and serum potassium, whereas it was positively correlated with high-density lipoprotein (HDL). In vitro, circCNOT6L silencing blocked cell viability and proliferation, while it promoted cell apoptosis of astrocytes undergoing oxygen-glucose deprivation/reperfusion (OGD/R) treatment. Mechanistically, the RNA antisense purification (RAP) assay and luciferase reporter assay revealed that circCNOT6L acts as a miRNA sponge to absorb miR-99a-5p and then regulates the expression of serine proteinase inhibitor (SERPINE1). In the further rescue experiment, overexpressing SERPINE1 could rescue the cell apoptotic signals due to circCNOT6L depletion. In conclusion, CircCNOT6L attenuated the cell apoptotic signal of astrocytes via the miR99a-5p/SERPINE1 axis and then alleviated injury after hypoxia induced by ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Humanos , Astrocitos , Encéfalo , Hipoxia , MicroARNs/genética , Inhibidor 1 de Activador Plasminogénico , Estados Unidos
12.
Cancer Med ; 12(11): 12553-12568, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039160

RESUMEN

BACKGROUND: Many studies have shown that circular RNAs (circRNAs) are abnormally expressed in various tumor tissues and served as a key regulator in the occurrence and development of cancer. However, in hepatocellular carcinoma (HCC), the molecular mechanism of circRNAs in body fluids remains to be further explored. METHODS: The expression levels of genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), wound healing assay, Transwell assays, flow cytometry, and tumor formation models in nude mice were conducted to investigate the effects of circFAM114A2 on HCC cells both in vitro and in vivo. RNA antisense purification (RAP), dual luciferase reporter assays and rescue assays were carried out to verify the interaction between circFAM114A2, miR-630 and HHIP. RESULTS: CircFAM114A2 was significantly downregulated in HCC tissues and was associated with microvascular invasion and lymph node metastasis of HCC patients. We also observed that circFAM114A2 was lowly expressed in HCC plasma, which may serve as an effective biomarker to screen HCC patients from healthy controls (area under curve (AUC)=0.922). In vitro, circFAM114A2 overexpression significantly blunted HCC cell proliferation, migration, invasion, and promoted apoptosis, whereas circFAM114A2 silencing posed opposite effects. In vivo, circFAM114A2 overexpression inhibited the growth of HCC cells. Mechanistically, circFAM114A2 could increase the expression of the tumor suppressor HHIP via acting as a sponge for miR-630. CONCLUSIONS: CircFAM114A2 exerts a tumor suppressor role in HCC through miR-630/HHIP axis, and may be served as a potential diagnostic and therapeutic biomarker for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Ratones Desnudos , ARN Circular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
13.
Cancer Res ; 83(5): 700-719, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36607615

RESUMEN

Clear cell renal cell carcinoma (ccRCC) frequently features a high level of tumor heterogeneity. Elucidating the chromatin landscape of ccRCC at the single-cell level could provide a deeper understanding of the functional states and regulatory dynamics underlying the disease. Here, we performed single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on 19 ccRCC samples, and whole-exome sequencing was used to understand the heterogeneity between individuals. Single-cell transcriptome and chromatin accessibility maps of ccRCC were constructed to reveal the regulatory characteristics of different tumor cell subtypes in ccRCC. Two long noncoding RNAs (RP11-661C8.2 and CTB-164N12.1) were identified that promoted the invasion and migration of ccRCC, which was validated with in vitro experiments. Taken together, this study comprehensively characterized the gene expression and DNA regulation landscape of ccRCC, which could provide new insights into the biology and treatment of ccRCC. SIGNIFICANCE: A comprehensive analysis of gene expression and DNA regulation in ccRCC using scATAC-seq and scRNA-seq reveals the DNA regulatory programs of ccRCC at the single-cell level.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cromatina , Epigénesis Genética , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Análisis de la Célula Individual
14.
Life Sci ; 262: 118496, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987060

RESUMEN

The infection epidemic event of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was formally declared a pandemic by World Health Organization on March 11th, 2020. Corona Virus Disease 2019 (COVID-19) is caused by SARS-CoV-2, a new type of coronavirus, which has high contagion and mainly causes respiratory symptoms. With the increase in confirmed cases, however, the infection symptoms turn to be diverse with secondary or first clinical symptoms relating to damage of the cardiovascular system and changes of myocardial enzyme spectrum, cardiac troponin I, electrocardiogram, cardiac function. The occurrence of extra-pulmonary manifestations, including immediately and long-term damage, means that the overall health burden caused by SARS-CoV-2 infection may be under-estimated because COVID-19 patients developed cardiovascular system injury are more likely to become serious. The factors such as directly pathogen-mediated damage to cardiomyocytes, down-regulated angiotensin-converting enzyme 2 (ACE2) expression, excessive inflammatory response, hypoxia and adverse drug reaction, are closely related to the occurrence and development of the course of COVID-19. In combination with recently published medical data of patients having SARS-CoV-2 infection and the latest studies, the manifestations of damage to cardiovascular system by COVID-19, possible pathogenic mechanisms and advances of the treatment are proposed in this article.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/complicaciones , Cardiomiopatías/complicaciones , Cardiomiopatías/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Humanos , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA