Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
WIREs Mech Dis ; 15(4): e1602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36750231

RESUMEN

Cannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA. In the late 1990s in some states, legislation assisted in legalizing the use of cannabis for medical purposes under physician supervision. As it has been proven that cannabinoids and their receptors play an essential role in the regulation of the physiological and biological processes in our bodies. The endocannabinoid system (ECS) is the complex that regulates the cell-signaling system consisting of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The ECS along with phytocannabinoids and synthetic cannabinoids serves to be a beneficial therapeutic target in treating diseases as they play roles in cell homeostasis, cell motility, inflammation, pain-sensation, mood, and memory. Cannabinoids have been shown to inhibit proliferation, metastasis, and angiogenesis and even restore homeostasis in a variety of models of cancer in vitro and in vivo. Cannabis and its receptors have evolved into a therapeutic treatment for cancers. This article is categorized under: Cancer > Molecular and Cellular Physiology.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Neoplasias , Humanos , Receptores de Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Cannabinoides/uso terapéutico , Cannabis/metabolismo , Agonistas de Receptores de Cannabinoides/uso terapéutico , Neoplasias/tratamiento farmacológico , Alucinógenos/uso terapéutico
2.
Sci Rep ; 10(1): 12505, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719369

RESUMEN

Inadequate nutrient intake leads to oxidative stress disrupting homeostasis, activating signaling, and altering metabolism. Oxidative stress serves as a hallmark in developing prostate lesions, and an aggressive cancer phenotype activating mechanisms allowing cancer cells to adapt and survive. It is unclear how adaptation and survival are facilitated; however, literature across several organisms demonstrates that a reversible cellular growth arrest and the transcription factor, nuclear factor-kappaB (NF-κB), contribute to cancer cell survival and therapeutic resistance under oxidative stress. We examined adaptability and survival to oxidative stress following nutrient deprivation in three prostate cancer models displaying varying degrees of tumorigenicity. We observed that reducing serum (starved) induced reactive oxygen species which provided an early oxidative stress environment and allowed cells to confer adaptability to increased oxidative stress (H2O2). Measurement of cell viability demonstrated a low death profile in stressed cells (starved + H2O2), while cell proliferation was stagnant. Quantitative measurement of apoptosis showed no significant cell death in stressed cells suggesting an adaptive mechanism to tolerate oxidative stress. Stressed cells also presented a quiescent phenotype, correlating with NF-κB nuclear translocation, suggesting a mechanism of tolerance. Our data suggests that nutrient deprivation primes prostate cancer cells for adaptability to oxidative stress and/or a general survival mechanism to anti-tumorigenic agents.


Asunto(s)
Adaptación Fisiológica , Estrés Oxidativo , Neoplasias de la Próstata/patología , Adaptación Fisiológica/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero , Humanos , Masculino , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Transporte de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA