Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Lett ; 26(7): 1071-1083, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37183392

RESUMEN

The composition of ecological assemblages has changed rapidly over the past century. Compositional reorganization rates are high relative to rates of alpha diversity change, creating an urgent need to understand how this compositional reorganization is progressing. We developed a quantitative framework for comparing temporal trajectories of compositional reorganization and applied it to two long-term bird and marine fish datasets. We then evaluated how the number and magnitude of short-term changes relate to overall rates of change. We found varied trajectories of turnover across birds and fish, with linear directional change predominating in birds and non-directional change more common in fish. The number of changes away from the baseline was a more consistent correlate of the overall rate of change than the magnitude of such changes, but large unreversed changes were found in both fish and birds, as were time series with accelerating compositional change. Compositional reorganization is progressing through a complex mix of temporal trajectories, including both threshold-like behaviour and the accumulation of repeated, linear change.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Aves , Peces , Estudios Longitudinales
2.
Glob Chang Biol ; 28(1): 46-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669982

RESUMEN

The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Plantas
3.
Proc Biol Sci ; 285(1870)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321296

RESUMEN

The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis, a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial-metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans.


Asunto(s)
Biomineralización , Fósiles , Poríferos/crecimiento & desarrollo , Animales , Arrecifes de Coral , Fósiles/microbiología , Fósiles/ultraestructura , Sedimentos Geológicos , Poríferos/microbiología , Poríferos/ultraestructura
4.
Nat Commun ; 13(1): 7523, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473861

RESUMEN

Oxygenation during the Cambrian Radiation progressed via a series of short-lived pulses. However, the metazoan biotic response to this episodic oxygenation has not been quantified, nor have the causal evolutionary processes been constrained. Here we present ecological analyses of Cambrian archaeocyath sponge reef communities on the Siberian Platform (525-514 Ma). During the oxic pulse at ~521-519 Ma, we quantify reef habitat expansion coupled to an increase in reef size and metacommunity complexity, from individual within-community reactions to their local environment, to ecologically complex synchronous community-wide response, accompanied by an increase in rates of origination. Subsequently, reef and archaeocyath body size are reduced in association with increased rates of extinction due to inferred expanded marine anoxia (~519-516.5 Ma). A later oxic pulse at ~515 Ma shows further reef habitat expansion, increased archaeocyath body size and diversity, but weaker community-wide environmental responses. These metrics confirm that oxygenation events created temporary pulses of evolutionary diversification and enhanced ecosystem complexity, potentially via the expansion of habitable space, and increased archaeocyath individual and reef longevity in turn leading to niche differentiation. Most notably, we show that progression towards increasing biodiversity and ecosystem complexity was episodic and discontinuous, rather than linear, during the Cambrian Radiation.


Asunto(s)
Ecosistema , Animales
5.
Curr Biol ; 32(6): 1446-1453.e4, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35196508

RESUMEN

Pterosaurs were the first vertebrates to evolve flight1,2 and include the largest flying animals in Earth history.3,4 While some of the last-surviving species were the size of airplanes, pterosaurs were long thought to be restricted to small body sizes (wingspans ca. <1.8-1.6 m) from their Triassic origins through the Jurassic, before increasing in size when derived long-skulled and short-tailed pterodactyloids lived alongside a diversity of birds in the Cretaceous.5 We report a new spectacularly preserved three-dimensional skeleton from the Middle Jurassic of Scotland, which we assign to a new genus and species: Dearc sgiathanach gen. et sp. nov. Its wingspan is estimated at >2.5 m, and bone histology shows it was a juvenile-subadult still actively growing when it died, making it the largest known Jurassic pterosaur represented by a well-preserved skeleton. A review of fragmentary specimens from the Middle Jurassic of England demonstrates that a diversity of pterosaurs was capable of reaching larger sizes at this time but have hitherto been concealed by a poor fossil record. Phylogenetic analysis places D. sgiathanach in a clade of basal long-tailed non-monofenestratan pterosaurs, in a subclade of larger-bodied species (Angustinaripterini) with elongate skulls convergent in some aspects with pterodactyloids.6 Far from a static prologue to the Cretaceous, the Middle Jurassic was a key interval in pterosaur evolution, in which some non-pterodactyloids diversified and experimented with larger sizes, concurrent with or perhaps earlier than the origin of birds. VIDEO ABSTRACT.


Asunto(s)
Dinosaurios , Fósiles , Animales , Evolución Biológica , Aves , Tamaño Corporal , Dinosaurios/anatomía & histología , Filogenia , Cráneo
6.
Nat Ecol Evol ; 4(10): 1410-1415, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747774

RESUMEN

The clade dynamics of marine animals have changed markedly over the Phanerozoic. Long-term diversification is associated with decreasing origination and extinction rates, and with increasing taxon longevity. Here we use the diversification trajectories of skeletal non-colonial marine families to infer the mechanisms that generated these trends. Suggested mechanisms behind these trends include stochastic extinction of taxa with high evolutionary volatility and selection for traits that buffer against extinction. We find an increasing predominance of Phanerozoic families with long lag times between first appearance and peak diversity, over those with 'early burst' diversification trajectories. Long-lag families persisted for longer and had lower evolutionary volatilities, higher genus-level occupancies and genera with larger niche breadths than early burst families. However, they do not preferentially show ecological modes known to protect against extinction. We interpret the rise of the long-lag families as reflecting an intensification of ecosystem-level mechanisms supporting both long-term coexistence and transient dynamics, which increased the capacity of marine ecosystems to accommodate highly diverse communities.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Evolución Biológica , Familia , Humanos
7.
Nat Ecol Evol ; 3(12): 1655-1660, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740841

RESUMEN

The unprecedented diversifications in the fossil record of the early Palaeozoic (541-419 million years ago) increased both within-sample (α) and global (γ) diversity, generating considerable ecological complexity. Faunal difference (ß diversity), including spatial heterogeneity, is thought to have played a major role in early Palaeozoic marine diversification, although α diversity is the major determinant of γ diversity through the Phanerozoic. Drivers for this Phanerozoic shift from ß to α diversity are not yet resolved. Here, we evaluate the impacts of environmental and faunal heterogeneity on diversity patterns using a global spatial grid. We present early Palaeozoic genus-level α, ß and γ diversity curves for molluscs, brachiopods, trilobites and echinoderms and compare them with measures of spatial lithological heterogeneity, which is our proxy for environmental heterogeneity. We find that α and ß diversity are associated with increased lithological heterogeneity, and that ß diversity declines over time while α increases. We suggest that the enhanced dispersal of marine taxa from the Middle Ordovician onwards facilitated increases in α diversity by encouraging the occupation of narrow niches and increasing the prevalence of transient species, simultaneously reducing spatial ß diversity. This may have contributed to a shift from ß to α diversity as the major determinant of γ diversity increase over this critical evolutionary interval.


Asunto(s)
Biodiversidad , Fósiles , Animales , Evolución Biológica , Ecología , Invertebrados
8.
Nat Ecol Evol ; 3(4): 528-538, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858589

RESUMEN

The 'Cambrian Explosion' describes the rapid increase in animal diversity and abundance, as manifest in the fossil record, between ~540 and 520 million years ago (Ma). This event, however, is nested within a far more ancient record of macrofossils extending at least into the late Ediacaran at ~571 Ma. The evolutionary events documented during the Ediacaran-Cambrian interval coincide with geochemical evidence for the modernisation of Earth's biogeochemical cycles. Holistic integration of fossil and geochemical records leads us to challenge the notion that the Ediacaran and Cambrian worlds were markedly distinct, and places biotic and environmental change within a longer-term narrative. We propose that the evolution of metazoans may have been facilitated by a series of dynamic and global changes in redox conditions and nutrient supply, which, potentially together with biotic feedbacks, enabled turnover events that sustained multiple phases of radiation. We argue that early metazoan diversification should be recast as a series of successive, transitional radiations that extended from the late Ediacaran and continued through the early Palaeozoic. We conclude that while the Cambrian Explosion represents a radiation of crown-group bilaterians, it was simply one phase amongst several metazoan radiations, some older and some younger.


Asunto(s)
Biodiversidad , Evolución Biológica , Fósiles , Animales , Biota
9.
Nat Ecol Evol ; 3(5): 858, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30979959

RESUMEN

In the version of this article initially published, the reference "Mitchell, E. G., & Kenchington, C. G. The utility of height for the Ediacaran organisms of Mistaken Point. Nat. Ecol. Evol. 2, 1218-1222 (2018)." was missing. A callout to the reference should have been placed at the end of this sentence: "For biotic replacement to occur, taxa must be both spatially collocated and have similar resource requirements, yet spatial analyses of contemporary communities find only very limited instances of resource competition." The reference has been added to the list, and the error has been corrected in the PDF and HTML versions of the article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA