Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186844

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Rasgo Drepanocítico , Animales , Humanos , Ratones , Carcinoma de Células Renales/patología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/metabolismo , Neoplasias Renales/patología , Rasgo Drepanocítico/genética , Rasgo Drepanocítico/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
2.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33745946

RESUMEN

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/tratamiento farmacológico , Carioferinas/antagonistas & inhibidores , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Células HCT116 , Células HT29 , Humanos , Indoles/administración & dosificación , Carioferinas/metabolismo , Ratones , Morfolinas/administración & dosificación , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Sulfonamidas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Exportina 1
3.
Oncogene ; 40(26): 4425-4439, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34108622

RESUMEN

Molecular alterations in the PI3K/AKT pathway occur frequently in hormone receptor-positive breast tumors. Patients with ER-positive, HER2-negative metastatic breast cancer are often treated with CDK4/6 inhibitors such as palbociclib in combination with endocrine therapy. Although this is an effective regimen, most patients ultimately progress. The purpose of this study was identifying synthetic lethality partners that can enhance palbociclib's antitumor efficacy in the presence of PIK3CA/AKT1 mutations. We utilized a barcoded shRNA library to determine critical targets for survival in isogenic MCF7 cells with PIK3CA/AKT1 mutations. We demonstrated that the efficacy of palbociclib is reduced in the presence of PIK3CA/AKT1 mutations. We also identified that the downregulation of discoidin domain receptor 1 (DDR1) is synthetically lethal with palbociclib. DDR1 knockdown and DDR1 pharmacological inhibitor decreased cell growth and inhibited cell cycle progression in all cell lines, while enhanced the sensitivity of PIK3CA/AKT1 mutant cells to palbociclib. Combined treatment of palbociclib and 7rh further induced cell cycle arrest in PIK3CA/AKT1 mutant cell lines. In vivo, 7rh significantly enhanced palbociclib's antitumor efficacy. Our data indicates that DDR1 inhibition can augment cell cycle suppressive effect of palbociclib and could be effective strategy for targeted therapy of ER-positive, HER2-negative breast cancers with PI3K pathway activation.


Asunto(s)
Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Receptor ErbB-2/genética , Receptores de Estrógenos/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Humanos , Células MCF-7 , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
4.
Cancers (Basel) ; 13(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34359705

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a "drop-out" loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings.

5.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309585

RESUMEN

Lack of sustained response to therapeutic agents in patients with KRAS-mutant lung cancer poses a major challenge and arises partly due to intratumor heterogeneity that defines phenotypically distinct tumor subpopulations. To attain better therapeutic outcomes, it is important to understand the differential therapeutic sensitivities of tumor cell subsets. Epithelial-mesenchymal transition is a biological phenomenon that can alter the state of cells along a phenotypic spectrum and cause transcriptional rewiring to produce distinct tumor cell subpopulations. We utilized functional shRNA screens, in in vitro and in vivo models, to identify and validate an increased dependence of mesenchymal tumor cells on cyclin-dependent kinase 4 (CDK4) for survival, as well as a mechanism of resistance to MEK inhibitors. High zinc finger E-box binding homeobox 1 levels in mesenchymal tumor cells repressed p21, leading to perturbed CDK4 pathway activity. Increased dependence on CDK4 rendered mesenchymal cancer cells particularly vulnerable to selective CDK4 inhibitors. Coadministration of CDK4 and MEK inhibitors in heterogeneous tumors effectively targeted different tumor subpopulations, subverting the resistance to either single-agent treatment.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Mutación , Proteínas de Transporte de Catión Orgánico/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , ADN de Neoplasias/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Neoplasias Experimentales , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
6.
Nat Commun ; 12(1): 4626, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330913

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Daño del ADN , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferasas/genética , ARN/genética , Proteínas Represoras/genética , Animales , Biocatálisis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevención & control , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevención & control , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN/metabolismo , Interferencia de ARN , Proteínas Represoras/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Cancers (Basel) ; 11(4)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30986992

RESUMEN

The implementation of cancer immunotherapeutics for solid tumors including lung cancers has improved clinical outcomes in a small percentage of patients. However, the majority of patients show little to no response or acquire resistance during treatment with checkpoint inhibitors delivered as a monotherapy. Therefore, identifying resistance mechanisms and novel combination therapy approaches is imperative to improve responses to immune checkpoint inhibitors. To address this, we performed an in vivo shRNA dropout screen that focused on genes encoding for FDA-approved drug targets (FDAome). We implanted epithelial and mesenchymal Kras/p53 (KP) mutant murine lung cancer cells expressing the FDAome shRNA library into syngeneic mice treated with an anti-PD-1 antibody. Sequencing for the barcoded shRNAs revealed Ntrk1 was significantly depleted from mesenchymal tumors challenged with PD-1 blockade, suggesting it provides a survival advantage to tumor cells when under immune system pressure. Our data confirmed Ntrk1 transcript levels are upregulated in tumors treated with PD-1 inhibitors. Additionally, analysis of tumor-infiltrating T cell populations revealed that Ntrk1 can promote CD8+ T cell exhaustion. Lastly, we found that Ntrk1 regulates Jak/Stat signaling to promote expression of PD-L1 on tumor cells. Together, these data suggest that Ntrk1 activates Jak/Stat signaling to regulate expression of immunosuppressive molecules including PD-L1, promoting exhaustion within the tumor microenvironment.

8.
Sci Transl Med ; 11(483)2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867319

RESUMEN

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)-regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación/genética , Neoplasias/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Interleucina-17/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Células Epiteliales/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Mesodermo/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
9.
Nat Commun ; 10(1): 5125, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719531

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade. Of the EMT-associated transcription factors, ZEB1 uniquely promotes NSCLC disease progression. Here we apply two independent screens, BioID and an Epigenome shRNA dropout screen, to define ZEB1 interactors that are critical to metastatic NSCLC. We identify the NuRD complex as a ZEB1 co-repressor and the Rab22 GTPase-activating protein TBC1D2b as a ZEB1/NuRD complex target. We find that TBC1D2b suppresses E-cadherin internalization, thus hindering cancer cell invasion and metastasis.


Asunto(s)
Cadherinas/metabolismo , Endocitosis , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteínas Co-Represoras/metabolismo , Humanos , Ratones , Modelos Biológicos , Metástasis de la Neoplasia , Unión Proteica , Proteínas de Unión al GTP rab/metabolismo
10.
Cell Metab ; 27(5): 977-987.e4, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29628419

RESUMEN

Adoptive T cell therapy (ACT) produces durable responses in some cancer patients; however, most tumors are refractory to ACT and the molecular mechanisms underlying resistance are unclear. Using two independent approaches, we identified tumor glycolysis as a pathway associated with immune resistance in melanoma. Glycolysis-related genes were upregulated in melanoma and lung cancer patient samples poorly infiltrated by T cells. Overexpression of glycolysis-related molecules impaired T cell killing of tumor cells, whereas inhibition of glycolysis enhanced T cell-mediated antitumor immunity in vitro and in vivo. Moreover, glycolysis-related gene expression was higher in melanoma tissues from ACT-refractory patients, and tumor cells derived from these patients exhibited higher glycolytic activity. We identified reduced levels of IRF1 and CXCL10 immunostimulatory molecules in highly glycolytic melanoma cells. Our findings demonstrate that tumor glycolysis is associated with the efficacy of ACT and identify the glycolysis pathway as a candidate target for combinatorial therapeutic intervention.


Asunto(s)
Glucólisis , Inmunoterapia Adoptiva , Neoplasias Pulmonares/terapia , Melanoma/terapia , Linfocitos T/trasplante , Animales , Línea Celular Tumoral , Quimiocina CXCL10/metabolismo , Femenino , Humanos , Factor 1 Regulador del Interferón/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA