Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Ecol Lett ; 23(7): 1107-1116, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418369

RESUMEN

Morphology and phenology influence plant-pollinator network structure, but whether they generate more stable pairwise interactions with higher pollination success remains unknown. Here we evaluate the importance of morphological trait matching, phenological overlap and specialisation for the spatio-temporal stability (measured as variability) of plant-pollinator interactions and for pollination success, while controlling for species' abundance. To this end, we combined a 6-year plant-pollinator interaction dataset, with information on species traits, phenologies, specialisation, abundance and pollination success, into structural equation models. Interactions among abundant plants and pollinators with well-matched traits and phenologies formed the stable and functional backbone of the pollination network, whereas poorly matched interactions were variable in time and had lower pollination success. We conclude that phenological overlap could be more useful for predicting changes in species interactions than species abundances, and that non-random extinction of species with well-matched traits could decrease the stability of interactions within communities and reduce their functioning.


Asunto(s)
Insectos , Polinización , Animales , Flores , Fenotipo , Plantas
2.
J Anim Ecol ; 89(9): 2145-2155, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32495955

RESUMEN

Niche and neutral processes jointly influence species interactions. Predictions of interactions based on these processes assume that they operate similarly across all species. However, species characteristics could systematically create differences in the strength of niche or neutral processes for each interspecific interaction. We used national-level records of plant-frugivore interactions, species traits, biogeographic status (native vs. exotic), phylogenies and species range sizes to test the hypothesis that the strength of niche processes in species interactions changes in predictable ways depending on trophic generalism and biogeographic status of the interacting species. The strength of niche processes (measured as trait matching) decreased when the generalism of the interacting partners increased. Furthermore, the slope of this negative relationship between trait matching and generalism of the interacting partners was steeper (more negative) for interactions between exotic species than those between native species. These results remained significant after accounting for the potential effects of neutral processes (estimated by species range size). These observed changes in the strength of niche processes in generating species interactions, after accounting for effects of neutral processes, could improve predictions of ecological networks from species trait data. Specifically, due to their shorter co-evolutionary history, exotic species tend to interact with native species even when lower trait matching occurs than in interactions among native species. Likewise, interactions between generalist bird species and generalist plant species should be expected to occur despite low trait matching between species, whereas interactions between specialist species involve higher trait matching.


Asunto(s)
Aves , Plantas , Animales , Ecosistema , Filogenia
3.
Oecologia ; 190(4): 891-899, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31273519

RESUMEN

Woody plant expansion into grasslands is widespread, driven by both successions to dominance by native woody species or invasion by non-native woody species. These shifts from grass- to woody-dominated systems also have profound effects on both above- and belowground communities and ecosystem processes. Woody-plant expansion should also alter the functional composition of the soil biota, including that of nematodes, which are major drivers of soil food-web structure and belowground processes, but such belowground impacts are poorly understood. We determined whether succession by a widespread native (Kunzea ericoides) and invasion by a non-native woody species (Pinus nigra) into tussock grasslands affect the composition of nematode functional guilds and the structure of nematode-based food webs. Although increasing dominance by woody species in both systems altered the functional guild composition of the nematode community, we found contrasting responses of nematode functional guilds to the different dominant plant species. Specifically, nematode communities reflected conditions of resource enrichment with increasing K. ericoides tree cover, whereas communities became structurally simplified and dominated by stress-tolerant nematode families with increasing P. nigra tree cover. Because nematodes regulate both bacterial- and fungal-dominated food webs in soils, these shifts could in turn alter multiple ecosystem processes belowground such as nutrient cycling. Incorporating species' functional traits into the assessment of habitat-change impacts on communities can greatly improve our understanding of species responses to environmental changes and their consequences in ecosystems.


Asunto(s)
Nematodos , Suelo , Animales , Ecosistema , Plantas , Madera
4.
Ecology ; 98(4): 995-1005, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27859031

RESUMEN

Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and dynamics. Despite this, it is not known how the different food webs in adjacent habitats assemble at their boundaries. Here we demonstrate that the composition and structure of herbivore-parasitoid food webs across edges between native and plantation forests are not randomly assembled from those of the adjacent communities. Rather, elevated proportions of abundant, interaction-generalist parasitoid species at habitat edges allowed considerable interaction rewiring, which led to higher linkage density and less modular networks, with higher parasitoid functional redundancy. This was despite high overlap in host composition between edges and interiors. We also provide testable hypotheses for how food webs may assemble between habitats with lower species overlap. In an increasingly fragmented world, non-random assembly of food webs at edges may increasingly affect community dynamics at the landscape level.


Asunto(s)
Ecosistema , Cadena Alimentaria , Ecología , Bosques , Herbivoria
5.
J Anim Ecol ; 86(6): 1372-1379, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28696537

RESUMEN

Fire represents a frequent disturbance in many ecosystems, which can affect plant-pollinator assemblages and hence the services they provide. Furthermore, fire events could affect the architecture of plant-pollinator interaction networks, modifying the structure and function of communities. Some pollinators, such as wood-nesting bees, may be particularly affected by fire events due to damage to the nesting material and its long regeneration time. However, it remains unclear whether fire influences the structure of bee-plant interactions. Here, we used quantitative plant-wood-nesting bee interaction networks sampled across four different post-fire age categories (from freshly-burnt to unburnt sites) in an arid ecosystem to test whether the abundance of wood-nesting bees, the breadth of resource use and the plant-bee community structure change along a post-fire age gradient. We demonstrate that freshly-burnt sites present higher abundances of generalist than specialist wood-nesting bees and that this translates into lower network modularity than that of sites with greater post-fire ages. Bees do not seem to change their feeding behaviour across the post-fire age gradient despite changes in floral resource availability. Despite the effects of fire on plant-bee interaction network structure, these mutualistic networks seem to be able to recover a few years after the fire event. This result suggests that these interactions might be highly resilient to this type of disturbance.


Asunto(s)
Abejas/fisiología , Incendios , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , Argentina , Femenino , Polen , Dinámica Poblacional
6.
Am Nat ; 188(4): 411-22, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27622875

RESUMEN

Understanding the effects of biodiversity on community persistence and productivity is key to managing both natural and production systems. Because rare species face greater danger of extinction, species evenness, a measure of how similar abundances are across species in a community, is seen as a key component of biodiversity. However, previous studies have failed to find a consistent association of species evenness with species survival and biomass production. Here we provide a theoretical framework for the relationship among these three elements. We demonstrate that the lack of consistent outcomes is not an idiosyncratic artifact of different studies but can be unified under one common framework. Applying a niche theory approach, we confirm that under demographic stochasticity evenness is a general indicator of the risk of future species extinctions in a community, in accordance with the majority of empirical studies. In contrast, evenness cannot be used as a direct indicator of the level of biomass production in a community. When a single species dominates, as expressed by the constraints imposed by the population dynamics, biomass production depends on the niche position of the dominating species and can increase or decrease with evenness. We demonstrate that high species evenness and an intermediate level of biomass production is the configuration that maximizes the average species survival probability in response to demographic stochasticity.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Dinámica Poblacional , Probabilidad
7.
Ecology ; 96(1): 193-202, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26236904

RESUMEN

Edge effects in fragmented natural habitats may De exaceroateci by intensive land use in the surrounding landscape. Given that most managed systems have higher primary productivity than adjacent natural systems, theory suggests that bottom-up subsidized consumers are likely to spill over from managed to natural habitats. Furthermore, the magnitude of spillover is likely to differ between generalist and specialist consumers, because of differences in their ability to use the full spectrum of resources. However, it is unknown whether there is indeed asymmetrical spillover of consumers between managed and natural habitats, and whether this is related to resource abundance or the trophic specialization of the consumer. We used flight intercept traps to measure spillover of generalist predators (Vespula wasps, Vespidae) and more specialist predators (106 species of parasitoids, Ichneumonidae and Braconidae) across habitat edges between native New Zealand forest and exotic plantation forest over a summer season. We found net spillover of both generalist and specialist predators from plantation to native forest, and that this was greater for generalists. To test whether natural enemy spillover from managed habitats was related to prey (caterpillar) abundance (i.e., whether it was bottom-up productivity driven, due to increased primary productivity), we conducted a large-scale herbivore reduction experiment at half of our plantation sites, by helicopter spraying caterpillar-specific insecticide over 2.5 ha per site. We monitored bidirectional natural enemy spillover and found that herbivore reduction reduced generalist but not specialist predator spillover. Trophic generalists may benefit disproportionately from high resource productivity in a habitat, and their cross-habitat spillover effects on natural food webs may be an important source of consumer pressure in mosaic landscapes.


Asunto(s)
Cadena Alimentaria , Agricultura Forestal , Bosques , Especies Introducidas , Animales , Fagus , Herbivoria , Larva , Lepidópteros , Nueva Zelanda , Pinus , Avispas
8.
J Anim Ecol ; 84(2): 364-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25279836

RESUMEN

Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in plantation forests, indicating that this habitat may impose stresses on parasitoids that constrain them to attack only host species for which they are best adapted. Overall, changes in land use across native to plantation forest edges differentially affected phylogenetic diversity across trophic levels, and may also exert a strong selective pressure for particular co-evolved herbivore-parasitoid interactions.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Animales , Evolución Biológica , Cadena Alimentaria , Herbivoria/clasificación , Larva/parasitología , Lepidópteros/clasificación , Lepidópteros/parasitología , Nueva Zelanda , Parásitos/clasificación , Plantas/clasificación , Plantas/parasitología
9.
Ecology ; 95(7): 1888-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25163121

RESUMEN

Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different rates in natural communities. Thus, it remains unclear whether these biodiversity mechanisms are important determinants of consumption in entire predator-prey assemblages, such that food-web interaction structure determines community-wide consumption and stability. Here, we use empirical quantitative food webs to study the community-wide effects of functional complementarity and redundancy of consumers (parasitoids) on herbivore control in temperate forests. We find that complementarity in host resource use by parasitoids was a strong predictor of absolute parasitism rates at the community level and that redundancy in host-use patterns stabilized community-wide parasitism rates in space, but not through time. These effects can potentially explain previous contradictory results from predator diversity research. Phylogenetic diversity (measured using taxonomic distance) did not explain functional complementarity or parasitism rates, so could not serve as a surrogate measure for functional complementarity. Our study shows that known mechanisms underpinning predator diversity effects on both functioning and stability can easily be extended to link food webs to ecosystem functioning.


Asunto(s)
Cadena Alimentaria , Lepidópteros/parasitología , Modelos Biológicos , Animales , Herbivoria , Interacciones Huésped-Parásitos , Larva/parasitología , Conducta Predatoria , Especificidad de la Especie , Árboles
10.
Trends Ecol Evol ; 39(5): 494-505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38262775

RESUMEN

Plant-pollinator interactions are ecologically and economically important, and, as a result, their prediction is a crucial theoretical and applied goal for ecologists. Although various analytical methods are available, we still have a limited ability to predict plant-pollinator interactions. The predictive ability of different plant-pollinator interaction models depends on the specific definitions used to conceptualize and quantify species attributes (e.g., morphological traits), sampling effects (e.g., detection probabilities), and data resolution and availability. Progress in the study of plant-pollinator interactions requires conceptual and methodological advances concerning the mechanisms and species attributes governing interactions as well as improved modeling approaches to predict interactions. Current methods to predict plant-pollinator interactions present ample opportunities for improvement and spark new horizons for basic and applied research.


Asunto(s)
Polinización , Animales , Modelos Biológicos , Insectos/fisiología , Plantas
11.
Environ Pollut ; 292(Pt A): 118350, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648832

RESUMEN

Light pollution represents a widespread long-established human-made disturbance and an important threat to nocturnal pollination. Distance from the niche centroid where optimal environmental conditions join may be related to species sensitivity to habitat change. We estimated the environmental suitability of the plant species Erythrostemon gilliesii and of its guild of hawkmoth pollinators. We considered the overlap of suitability maps of both partners as the environmental suitability of the interaction. We used a three-year record of ten E. gilliesii populations to calculate pollination intensity as the number of individuals that received pollen per population. In addition, for each population, we measured the distance to the high light pollution source around a buffer of 15 km radius. Finally, we predicted pollination intensity values for environmental suitability ranging from 0 to 1, and distance to high light pollution sources ranging from 0 to 56 Km. Pollination intensity decreased along an axis of increasing environmental suitability and increased with distance to sources of light pollution. The highest values of pollination intensity were observed at greatest distances to sources of light pollution and where environmental suitability of the interaction was lowest. The prediction model evidenced that, when environmental suitability was lowest, pollination intensity increased with distance to sources of high light pollution. However, when environmental suitability was intermediate or high, pollination intensity decreased away and until 28 km from the sources of high light pollution. Beyond 28 km from the sources of high light pollution, pollination intensity remained low and constant. Populations under conditions of low environmental suitability might be more likely to respond to disturbances that affect pollinators than populations under conditions of high environmental suitability.


Asunto(s)
Flores , Polinización , Ecosistema , Humanos , Plantas , Polen
12.
PLoS One ; 16(9): e0258080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34587224

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0252448.].

13.
PLoS One ; 16(6): e0252448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34061885

RESUMEN

Biological pest control (i.e. 'biocontrol') agents can have direct and indirect non-target impacts, and predicting these effects (especially indirect impacts) remains a central challenge in biocontrol risk assessment. The analysis of ecological networks offers a promising approach to understanding the community-wide impacts of biocontrol agents (via direct and indirect interactions). Independently, species traits and phylogenies have been shown to successfully predict species interactions and network structure (alleviating the need to collect quantitative interaction data), but whether these approaches can be combined to predict indirect impacts of natural enemies remains untested. Whether predictions of interactions (i.e. direct effects) can be made equally well for generalists vs. specialists, abundant vs. less abundant species, and across different habitat types is also untested for consumer-prey interactions. Here, we used two machine-learning techniques (random forest and k-nearest neighbour; KNN) to test whether we could accurately predict empirically-observed quantitative host-parasitoid networks using trait and phylogenetic information. Then, we tested whether the accuracy of machine-learning-predicted interactions depended on the generality or abundance of the interacting partners, or on the source (habitat type) of the training data. Finally, we used these predicted networks to generate predictions of indirect effects via shared natural enemies (i.e. apparent competition), and tested these predictions against empirically observed indirect effects between hosts. We found that random-forest models predicted host-parasitoid pairwise interactions (which could be used to predict attack of non-target host species) more successfully than KNN. This predictive ability depended on the generality of the interacting partners for KNN models, and depended on species' abundances for both random-forest and KNN models, but did not depend on the source (habitat type) of data used to train the models. Further, although our machine-learning informed methods could significantly predict indirect effects, the explanatory power of our machine-learning models for indirect interactions was reasonably low. Combining machine-learning and network approaches provides a starting point for reducing risk in biocontrol introductions, and could be applied more generally to predicting species interactions such as impacts of invasive species.


Asunto(s)
Dípteros/genética , Interacciones Huésped-Parásitos/genética , Himenópteros/genética , Lepidópteros/genética , Aprendizaje Automático , Control Biológico de Vectores/métodos , Filogenia , Animales , Cadena Alimentaria , Bosques , Especies Introducidas
14.
PLoS One ; 15(1): e0227130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31923283

RESUMEN

Success of invasive non-native plant species management is usually measured as changes in the abundance of the invasive plant species or native plant species following invader management, but more complex trophic responses to invader removal are often ignored or assumed. Moreover, the effects of invader removal at different stages of the invasion process is rarely evaluated, despite a growing recognition that invader impacts are density or stage-dependent. Therefore, the effectiveness of invasive species management for restoring community structure and function across trophic levels remains poorly understood. We determined how soil nematode diversity and community composition respond to removal of the globally invasive tree species Pinus contorta at different stages of invasion by reanalysing and expanding an earlier study including uninvaded vegetation (seedlings removed continuously), early invader removal (saplings removed), late removal (trees removed), and no removal (invaded). These treatments allowed us to evaluate the stage-dependent belowground trophic responses to biological invasion and removal. We found that invaded plots had half the nematode taxa richness compared to uninvaded plots, and that tree invasion altered the overall composition of the nematode community. Differences in nematode community composition between uninvaded nematode communities and those under the tree removal strategy tended to dilute higher up the food chain, whereas the composition of uninvaded vs. sapling removal strategies did not differ significantly. Conversely, the composition of invaded compared to uninvaded nematode communities differed across all trophic levels, altering the community structure and function. Specifically, invaded communities were structurally simplified compared to uninvaded communities, and had a higher proportion of short life cycle nematodes, characteristic of disturbed environments. We demonstrate that a shift in management strategies for a globally invasive tree species from removing trees to earlier removal of saplings is needed for maintaining the composition and structure of soil nematode communities to resemble uninvaded conditions.


Asunto(s)
Especies Introducidas , Nematodos/fisiología , Suelo/parasitología , Árboles/parasitología , Animales , Ecosistema , Infecciones por Nematodos , Pinus
15.
Ecology ; 101(7): e03028, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112402

RESUMEN

The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed-dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional-role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional-role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed-dispersal process along the Andes.


Asunto(s)
Dispersión de Semillas , Animales , Aves , Ecosistema , Frutas , Plantas , Semillas
16.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190116, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983328

RESUMEN

Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Bosques , Clima Tropical
17.
Science ; 374(6572): 1208-1209, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34855486
18.
Nat Commun ; 7: 12644, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27577948

RESUMEN

Species have strong indirect effects on others, and predicting these effects is a central challenge in ecology. Prey species sharing an enemy (predator or parasitoid) can be linked by apparent competition, but it is unknown whether this process is strong enough to be a community-wide structuring mechanism that could be used to predict future states of diverse food webs. Whether species abundances are spatially coupled by enemy movement across different habitats is also untested. Here, using a field experiment, we show that predicted apparent competitive effects between species, mediated via shared parasitoids, can significantly explain future parasitism rates and herbivore abundances. These predictions are successful even across edges between natural and managed forests, following experimental reduction of herbivore densities by aerial spraying of insecticide over 20 hectares. This result shows that trophic indirect effects propagate across networks and habitats in important, predictable ways, with implications for landscape planning, invasion biology and biological control.


Asunto(s)
Cadena Alimentaria , Bosques , Herbivoria/fisiología , Invertebrados/fisiología , Árboles/fisiología , Animales , Bacillus thuringiensis/patogenicidad , Agentes de Control Biológico/administración & dosificación , Femenino , Predicción/métodos , Interacciones Huésped-Parásitos , Invertebrados/microbiología , Larva/microbiología , Larva/fisiología , Masculino , Nueva Zelanda , Dinámica Poblacional/tendencias , Árboles/parasitología , Avispas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA